On Computing Inverse Entries of a Sparse Matrix in an Out-of-Core Environment
暂无分享,去创建一个
Jean-Yves L'Excellent | Yves Robert | François-Henry Rouet | Bora Uçar | Patrick Amestoy | Iain S. Duff | I. Duff | B. Uçar | P. Amestoy | J. L’Excellent | Y. Robert | François-Henry Rouet
[1] J. Navarro-Pedreño. Numerical Methods for Least Squares Problems , 1996 .
[2] Yousef Saad,et al. A Probing Method for Computing the Diagonal of the Matrix Inverse ∗ , 2010 .
[3] Bora Uçar,et al. Encapsulating Multiple Communication-Cost Metrics in Partitioning Sparse Rectangular Matrices for Parallel Matrix-Vector Multiplies , 2004, SIAM J. Sci. Comput..
[4] Patrick Amestoy,et al. A Fully Asynchronous Multifrontal Solver Using Distributed Dynamic Scheduling , 2001, SIAM J. Matrix Anal. Appl..
[5] Tzvetomila Slavova,et al. Parallel triangular solution in the out-of-core multifrontal approach for solving large sparse linear systems. (Résolution triangulaire de systèmes linéaires creux de grande taille dans un contexte parallèle multifrontal et hors-mémoire) , 2009 .
[6] Joseph W. H. Liu. The role of elimination trees in sparse factorization , 1990 .
[7] Bora Uçar,et al. Revisiting Hypergraph Models for Sparse Matrix Partitioning , 2007, SIAM Rev..
[8] Al Geist,et al. Task scheduling for parallel sparse Cholesky factorization , 1990, International Journal of Parallel Programming.
[9] พงศ์ศักดิ์ บินสมประสงค์,et al. FORMATION OF A SPARSE BUS IMPEDANCE MATRIX AND ITS APPLICATION TO SHORT CIRCUIT STUDY , 1980 .
[10] Cheng-Kok Koh,et al. A scalable distributed method for quantum-scale device simulation , 2007 .
[11] Joseph W. H. Liu,et al. Elimination Structures for Unsymmetric Sparse $LU$ Factors , 1993, SIAM J. Matrix Anal. Appl..
[12] Gary L. Miller,et al. Geometric mesh partitioning: implementation and experiments , 1995, Proceedings of 9th International Parallel Processing Symposium.
[13] C. W. Gear,et al. Sparsity structure and Gaussian elimination , 1988, SGNM.
[14] David S. Johnson,et al. Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .
[15] W. F. Tinney,et al. On computing certain elements of the inverse of a sparse matrix , 1975, Commun. ACM.
[16] Ümit V. Çatalyürek,et al. Hypergraph-Partitioning-Based Decomposition for Parallel Sparse-Matrix Vector Multiplication , 1999, IEEE Trans. Parallel Distributed Syst..
[17] R. Terrier,et al. INTEGRAL SPI Observation of the Galactic Central Radian: Contribution of Discrete Sources and Implication for the Diffuse Emission* , 2005 .
[18] Patrick Amestoy,et al. Analysis of the solution phase of a parallel multifrontal approach , 2010, Parallel Comput..
[19] Ümit V. Çatalyürek,et al. Permuting Sparse Rectangular Matrices into Block-Diagonal Form , 2004, SIAM J. Sci. Comput..
[20] E. Weinan,et al. Fast algorithm for extracting the diagonal of the inverse matrix with application to the electronic structure analysis of metallic systems , 2009 .
[21] H. Niessner,et al. On computing the inverse of a sparse matrix , 1983 .
[22] TIMOTHY A. DAVISyTechnical,et al. Computing the Sparse Inverse Subset: an Inverse Multifrontal Approach , 1995 .
[23] Emmanuel Agullo,et al. On the Out-Of-Core Factorization of Large Sparse Matrices. (Méthodes directes hors-mémoire (out-of-core) pour la résolution de systèmes linéaires creux de grande taille) , 2008 .
[24] Patrick Amestoy,et al. Hybrid scheduling for the parallel solution of linear systems , 2006, Parallel Comput..
[25] W. Fichtner,et al. Atomistic simulation of nanowires in the sp3d5s* tight-binding formalism: From boundary conditions to strain calculations , 2006 .
[26] Thomas Lengauer,et al. Combinatorial algorithms for integrated circuit layout , 1990, Applicable theory in computer science.