SPIN–ORBIT ALIGNMENT FOR THE CIRCUMBINARY PLANET HOST KEPLER-16 A

Kepler-16 is an eccentric low-mass eclipsing binary with a circumbinary transiting planet. Here, we investigate the angular momentum of the primary star, based on Kepler photometry and Keck spectroscopy. The primary star’s rotation period is 35.1 ± 1.0 days, and its projected obliquity with respect to the stellar binary orbit is 1°.6 ± 2°.4. Therefore, the three largest sources of angular momentum—the stellar orbit, the planetary orbit, and the primary’s rotation—are all closely aligned. This finding supports a formation scenario involving accretion from a single disk. Alternatively, tides may have realigned the stars despite their relatively wide separation (0.2 AU), a hypothesis that is supported by the agreement between the measured rotation period and the “pseudosynchronous” period of tidal evolution theory. The rotation period, chromospheric activity level, and fractional light variations suggest a main-sequence age of 2–4 Gyr. Evolutionary models of low-mass stars can match the observed masses and radii of the primary and secondary stars to within about 3%.

[1]  Gilles Chabrier,et al.  Evolution of low-mass star and brown dwarf eclipsing binaries , 2007, 0707.1792.

[2]  S. Albrecht,et al.  The spin axes orbital alignment of both stars within the eclipsing binary system V1143 Cyg using the Rossiter-McLaughlin effect , 2007, 0708.2918.

[3]  Andrei Tokovinin,et al.  Relative orientation of orbits in triple stars , 2002 .

[4]  I. Bonnell,et al.  The formation of close binary systems by dynamical interactions and orbital decay , 2002, astro-ph/0212403.

[5]  S. Mikkola Encounters of binaries – I. Equal energies , 1983 .

[6]  S. Baliunas,et al.  Rotation, convection, and magnetic activity in lower main-sequence stars , 1984 .

[7]  K. Rice,et al.  Protostars and Planets V , 2005 .

[8]  John C. Geary,et al.  INSTRUMENT PERFORMANCE IN KEPLER's FIRST MONTHS , 2010, 1001.0216.

[9]  Jie Li,et al.  KOI-126: A Triply Eclipsing Hierarchical Triple with Two Low-Mass Stars , 2011, Science.

[10]  Richard P. Nelson,et al.  On the formation and migration of giant planets in circumbinary discs , 2008, 0803.2000.

[11]  J. Valenti,et al.  Spectroscopy Made Easy: A New Tool for Fitting Observations with Synthetic Spectra , 1996 .

[12]  Joshua N. Winn,et al.  Misaligned spin and orbital axes cause the anomalous precession of DI Herculis , 2009, Nature.

[13]  Matthew Bate,et al.  Stellar, brown dwarf and multiple star properties from hydrodynamical simulations of star cluster formation , 2008, 0811.0163.

[14]  L. Marschall,et al.  ABSOLUTE DIMENSIONS OF THE G7+K7 ECLIPSING BINARY STAR IM VIRGINIS: DISCREPANCIES WITH STELLAR EVOLUTION MODELS , 2009, 0910.4458.

[15]  I. Ribas,et al.  GU Bootis: A New 0.6 M☉ Detached Eclipsing Binary , 2005, astro-ph/0505001.

[16]  A. Gimenez,et al.  Accurate masses and radii of normal stars: modern results and applications , 2009, 0908.2624.

[17]  Ignasi Ribas,et al.  Absolute Dimensions of the M-Type Eclipsing Binary YY Geminorum (Castor C): A Challenge to Evolutionary Models in the Lower Main Sequence* , 2001 .

[18]  R. P. Butler,et al.  ATTAINING DOPPLER PRECISION OF 3 M S-1 , 1996 .

[19]  J. Winn,et al.  THE BANANA PROJECT. III. SPIN–ORBIT ALIGNMENT IN THE LONG-PERIOD ECLIPSING BINARY NY CEPHEI , 2010, 1011.0425.

[20]  A. Boss Formation of hierarchical multiple protostellar cores , 1991, Nature.

[21]  Warren R. Brown,et al.  Kepler-16: A Transiting Circumbinary Planet , 2011, Science.

[22]  F. Marzari,et al.  Planetesimal Evolution in Circumbinary Gaseous Disks: A Hybrid Model , 2008 .

[23]  Jeffrey C. Hall,et al.  THE ACTIVITY AND VARIABILITY OF THE SUN AND SUN-LIKE STARS. II. CONTEMPORANEOUS PHOTOMETRY AND SPECTROSCOPY OF BRIGHT SOLAR ANALOGS , 2009 .

[24]  D. F. Gray,et al.  The Observation and Analysis of Stellar Photospheres , 2021 .

[25]  Y. Hosokawa On the Rotation Effect of Velocity Curves in Eclipsing Binary Systems , 1953 .

[26]  M. R. Haas,et al.  Kepler Mission Design, Realized Photometric Performance, and Early Science , 2010, 1001.0268.

[27]  J. Papaloizou,et al.  On the Tidal Interaction of a Solar-Type Star with an Orbiting Companion: Excitation of g-Mode Oscillation and Orbital Evolution , 1998, astro-ph/9801280.

[28]  S. Barnes A SIMPLE NONLINEAR MODEL FOR THE ROTATION OF MAIN-SEQUENCE COOL STARS. I. INTRODUCTION, IMPLICATIONS FOR GYROCHRONOLOGY, AND COLOR–PERIOD DIAGRAMS , 2010 .

[29]  J. Beuzit,et al.  Mass-radius relation of low and very low-mass stars revisited with the VLTI , 2009, 0906.0602.

[30]  S. Barnes Accepted for publication in The Astrophysical Journal Ages for illustrative field stars using gyrochronology: viability, limitations and errors , 2022 .

[31]  N. Ivanova Population of dynamically formed triples in dense stellar systems , 2005, astro-ph/0509516.

[32]  Avi Shporer,et al.  THE IMPACT OF THE CONVECTIVE BLUESHIFT EFFECT ON SPECTROSCOPIC PLANETARY TRANSITS , 2011, 1103.0775.

[33]  D. B. McLaughlin Some results of a spectrographic study of the Algol system. , 1924 .

[34]  R. A. Rossiter On the detection of an effect of rotation during eclipse in the velocity of the brigher component of beta Lyrae, and on the constancy of velocity of this system. , 1924 .

[35]  S. Barnes,et al.  ANGULAR MOMENTUM LOSS FROM COOL STARS: AN EMPIRICAL EXPRESSION AND CONNECTION TO STELLAR ACTIVITY , 2010, 1104.2350.

[36]  Howard Isaacson,et al.  Kepler Planet-Detection Mission: Introduction and First Results , 2010, Science.

[37]  Yasuhiro Ohta,et al.  The Rossiter-McLaughlin Effect and Analytic Radial Velocity Curves for Transiting Extrasolar Planetary Systems , 2004, astro-ph/0410499.

[38]  L. Hillenbrand,et al.  Improved Age Estimation for Solar-Type Dwarfs Using Activity-Rotation Diagnostics , 2008, 0807.1686.

[39]  I. Ribas,et al.  The 0.4-$M_{\odot}$ eclipsing binary CU Cancri - Absolute dimensions, comparison with evolutionary models and possible evidence for a circumstellar dust disk , 2002, astro-ph/0211086.