Evasion paths in mobile sensor networks
暂无分享,去创建一个
[1] Heinrich W. E. Jung. Ueber die kleinste Kugel, die eine räumliche Figur einschliesst. , 1901 .
[2] L. Vietoris. Über den höheren Zusammenhang kompakter Räume und eine Klasse von zusammenhangstreuen Abbildungen , 1927 .
[3] H. Whitney. The Self-Intersections of a Smooth n-Manifold in 2n-Space , 1944 .
[4] W. D. Wightman. Philosophical Transactions of the Royal Society , 1961, Nature.
[5] S. Lane. Categories for the Working Mathematician , 1971 .
[6] P. Gabriel. Unzerlegbare Darstellungen I , 1972 .
[7] A. Zabrodsky,et al. The homotopy spectral sequence for equivariant function complexes , 1987 .
[8] Herbert Edelsbrunner,et al. Three-dimensional alpha shapes , 1992, VVS.
[9] Masahisa Adachi,et al. Embeddings and immersions , 1993 .
[10] 足立 正久,et al. Embeddings and immersions , 1993 .
[11] Ioan Mackenzie James,et al. Fibrewise Homotopy Theory , 1998 .
[12] Embeddings from the point of view of immersion theory , 1999, math/9905203.
[13] Embeddings from the point of view of immersion theory: Part II , 1999, math/9905202.
[14] Herbert Edelsbrunner,et al. Topological persistence and simplification , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.
[15] Carsten Thomassen,et al. Graphs on Surfaces , 2001, Johns Hopkins series in the mathematical sciences.
[16] Kiyoshi Igusa. Higher Franz-Reidemeister torsion , 2002 .
[17] Arieh Iserles,et al. On the Foundations of Computational Mathematics , 2001 .
[18] Gaurav S. Sukhatme,et al. Connecting the Physical World with Pervasive Networks , 2002, IEEE Pervasive Comput..
[19] Donald F. Towsley,et al. Mobility improves coverage of sensor networks , 2005, MobiHoc '05.
[20] Andrew T. Campbell,et al. Proceedings of the 6th ACM international symposium on Mobile ad hoc networking and computing , 2005 .
[21] Afra Zomorodian,et al. Computing Persistent Homology , 2005, Discret. Comput. Geom..
[22] Sanjay Jha,et al. The holes problem in wireless sensor networks: a survey , 2005, MOCO.
[23] Gaurav S. Sukhatme,et al. Surrounding Nodes in Coordinate-Free Networks , 2006, WAFR.
[24] Vin de Silva,et al. Coordinate-free Coverage in Sensor Networks with Controlled Boundaries via Homology , 2006, Int. J. Robotics Res..
[25] A. Haefliger,et al. DIFFERENTIABLE IMBEDDINGS , 2007 .
[26] Vin de Silva,et al. Coverage in sensor networks via persistent homology , 2007 .
[27] Sajal K. Das,et al. Coverage and connectivity issues in wireless sensor networks: A survey , 2008, Pervasive Mob. Comput..
[28] Yuliy Baryshnikov,et al. Target Enumeration via Euler Characteristic Integrals , 2009, SIAM J. Appl. Math..
[29] H. T. Mouftah,et al. Localised alpha-shape computations for boundary recognition in sensor networks , 2009, Ad Hoc Networks.
[30] Herbert Edelsbrunner,et al. Computational Topology - an Introduction , 2009 .
[31] Dmitriy Morozov,et al. Zigzag persistent homology and real-valued functions , 2009, SCG '09.
[32] Wing-Kai Hon,et al. Detection of intelligent mobile target in a mobile sensor network , 2010, TNET.
[33] Gunnar E. Carlsson,et al. Zigzag Persistence , 2008, Found. Comput. Math..
[34] Shiyao Jin,et al. Coverage Problem in Wireless Sensor Network: A Survey , 2010, J. Networks.
[35] Dmitriy Morozov,et al. Dualities in persistent (co)homology , 2011, ArXiv.
[36] Bang Wang,et al. Coverage problems in sensor networks: A survey , 2011, CSUR.
[37] Geoffrey A. Hollinger,et al. Search and pursuit-evasion in mobile robotics , 2011, Auton. Robots.
[38] Jie Gao,et al. Geometric algorithms for sensor networks , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[39] Sara Kališnik Verovšek. Alexander Duality for Parametrized Homology , 2013, 1303.1591.
[40] Sara Kalisnik. Alexander duality for parametrized homology , 2013 .
[41] R. Ho. Algebraic Topology , 2022 .