Evasion paths in mobile sensor networks

Suppose that ball-shaped sensors wander in a bounded domain. A sensor does not know its location but does know when it overlaps a nearby sensor. We say that an evasion path exists in this sensor network if a moving intruder can avoid detection. In ‘Coordinate-free coverage in sensor networks with controlled boundaries via homology', Vin de Silva and Robert Ghrist give a necessary condition, depending only on the time-varying connectivity data of the sensors, for an evasion path to exist. Using zigzag persistent homology, we provide an equivalent condition that moreover can be computed in a streaming fashion. However, no method with time-varying connectivity data as input can give necessary and sufficient conditions for the existence of an evasion path. Indeed, we show that the existence of an evasion path depends not only on the fibrewise homotopy type of the region covered by sensors but also on its embedding in spacetime. For planar sensors that also measure weak rotation and distance information, we provide necessary and sufficient conditions for the existence of an evasion path.

[1]  Heinrich W. E. Jung Ueber die kleinste Kugel, die eine räumliche Figur einschliesst. , 1901 .

[2]  L. Vietoris Über den höheren Zusammenhang kompakter Räume und eine Klasse von zusammenhangstreuen Abbildungen , 1927 .

[3]  H. Whitney The Self-Intersections of a Smooth n-Manifold in 2n-Space , 1944 .

[4]  W. D. Wightman Philosophical Transactions of the Royal Society , 1961, Nature.

[5]  S. Lane Categories for the Working Mathematician , 1971 .

[6]  P. Gabriel Unzerlegbare Darstellungen I , 1972 .

[7]  A. Zabrodsky,et al.  The homotopy spectral sequence for equivariant function complexes , 1987 .

[8]  Herbert Edelsbrunner,et al.  Three-dimensional alpha shapes , 1992, VVS.

[9]  Masahisa Adachi,et al.  Embeddings and immersions , 1993 .

[10]  足立 正久,et al.  Embeddings and immersions , 1993 .

[11]  Ioan Mackenzie James,et al.  Fibrewise Homotopy Theory , 1998 .

[12]  Embeddings from the point of view of immersion theory , 1999, math/9905203.

[13]  Embeddings from the point of view of immersion theory: Part II , 1999, math/9905202.

[14]  Herbert Edelsbrunner,et al.  Topological persistence and simplification , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[15]  Carsten Thomassen,et al.  Graphs on Surfaces , 2001, Johns Hopkins series in the mathematical sciences.

[16]  Kiyoshi Igusa Higher Franz-Reidemeister torsion , 2002 .

[17]  Arieh Iserles,et al.  On the Foundations of Computational Mathematics , 2001 .

[18]  Gaurav S. Sukhatme,et al.  Connecting the Physical World with Pervasive Networks , 2002, IEEE Pervasive Comput..

[19]  Donald F. Towsley,et al.  Mobility improves coverage of sensor networks , 2005, MobiHoc '05.

[20]  Andrew T. Campbell,et al.  Proceedings of the 6th ACM international symposium on Mobile ad hoc networking and computing , 2005 .

[21]  Afra Zomorodian,et al.  Computing Persistent Homology , 2005, Discret. Comput. Geom..

[22]  Sanjay Jha,et al.  The holes problem in wireless sensor networks: a survey , 2005, MOCO.

[23]  Gaurav S. Sukhatme,et al.  Surrounding Nodes in Coordinate-Free Networks , 2006, WAFR.

[24]  Vin de Silva,et al.  Coordinate-free Coverage in Sensor Networks with Controlled Boundaries via Homology , 2006, Int. J. Robotics Res..

[25]  A. Haefliger,et al.  DIFFERENTIABLE IMBEDDINGS , 2007 .

[26]  Vin de Silva,et al.  Coverage in sensor networks via persistent homology , 2007 .

[27]  Sajal K. Das,et al.  Coverage and connectivity issues in wireless sensor networks: A survey , 2008, Pervasive Mob. Comput..

[28]  Yuliy Baryshnikov,et al.  Target Enumeration via Euler Characteristic Integrals , 2009, SIAM J. Appl. Math..

[29]  H. T. Mouftah,et al.  Localised alpha-shape computations for boundary recognition in sensor networks , 2009, Ad Hoc Networks.

[30]  Herbert Edelsbrunner,et al.  Computational Topology - an Introduction , 2009 .

[31]  Dmitriy Morozov,et al.  Zigzag persistent homology and real-valued functions , 2009, SCG '09.

[32]  Wing-Kai Hon,et al.  Detection of intelligent mobile target in a mobile sensor network , 2010, TNET.

[33]  Gunnar E. Carlsson,et al.  Zigzag Persistence , 2008, Found. Comput. Math..

[34]  Shiyao Jin,et al.  Coverage Problem in Wireless Sensor Network: A Survey , 2010, J. Networks.

[35]  Dmitriy Morozov,et al.  Dualities in persistent (co)homology , 2011, ArXiv.

[36]  Bang Wang,et al.  Coverage problems in sensor networks: A survey , 2011, CSUR.

[37]  Geoffrey A. Hollinger,et al.  Search and pursuit-evasion in mobile robotics , 2011, Auton. Robots.

[38]  Jie Gao,et al.  Geometric algorithms for sensor networks , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[39]  Sara Kališnik Verovšek Alexander Duality for Parametrized Homology , 2013, 1303.1591.

[40]  Sara Kalisnik Alexander duality for parametrized homology , 2013 .

[41]  R. Ho Algebraic Topology , 2022 .