Modelling and simulation of hot stamping

The growing effort to reduce vehicle weight and improve passive safety in the automotive industry has drastically increased the demand for ultra high strength steel components. There are several pr ...

[1]  G. W. Greenwood,et al.  The deformation of metals under small stresses during phase transformations , 1965, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[2]  Maciej Pietrzyk,et al.  Development of a Computer Code for the Interpretation of Results of Hot Plane Strain Compression Tests , 2000 .

[3]  T. Rowan Functional stability analysis of numerical algorithms , 1990 .

[4]  M. Bassim,et al.  Characterization of the compression properties of rail steels at high temperatures and strain rates , 1991 .

[5]  L. Meekisho,et al.  A computational model for the prediction of steel hardenability , 1998 .

[6]  M. Avrami Kinetics of Phase Change. II Transformation‐Time Relations for Random Distribution of Nuclei , 1940 .

[7]  Milos Kojic,et al.  The ‘effective‐stress‐function’ algorithm for thermo‐elasto‐plasticity and creep , 1987 .

[8]  W. Wang,et al.  Simulation of Hot Stamping Process With Advanced Material Modeling , 2004 .

[9]  Zhi-gang Wang,et al.  Coupling between stress, temperature, and metallic structures during processes involving phase transformations , 1985 .

[10]  M. Oldenburg,et al.  Numerical implementation of a constitutive model for simulation of hot stamping , 2007 .

[11]  Mats Oldenburg,et al.  Testing and evaluation of material data for analysis of forming and hardening of boron steel components , 2002 .

[12]  J. Devaux,et al.  A theoretical and numerical approach to the plastic behaviour of steels during phase transformations—II. Study of classical plasticity for ideal-plastic phases , 1986 .

[13]  J. Goldak,et al.  Coupled transient heat transfer—microstructure weld computations (part B) , 1988 .

[14]  J. Leblond Mathematical modelling of transformation plasticity in steels II: Coupling with strain hardening phenomena , 1989 .

[15]  R. Honeycombe Steels, Microstructure and Properties , 1982 .

[16]  Y. Chastel,et al.  3D inverse analysis model using semi-analytical differentiation for mechanical parameter estimation , 2003 .

[17]  C. Sellars,et al.  Effect of changing strain rate on stress-strain behaviour during high temperature deformation , 1987 .

[18]  Rolf Mahnken,et al.  The identification of parameters for visco-plastic models via finite-element methods and gradient methods , 1994 .

[19]  M. Avrami Granulation, Phase Change, and Microstructure Kinetics of Phase Change. III , 1941 .

[20]  W. Smith,et al.  Structure and properties of engineering alloys , 1981 .

[21]  Jean-Baptiste Leblond,et al.  A new kinetic model for anisothermal metallurgical transformations in steels including effect of austenite grain size , 1984 .

[22]  Lakhdar Taleb,et al.  Experimental analysis of transformation plasticity , 2001 .

[23]  Siamak Serajzadeh,et al.  Modelling of temperature history and phase transformations during cooling of steel , 2004 .

[24]  K. P. Rao,et al.  Hot Deformation Studies On A Low-Carbon Steel: Part 1 - Flow Curves And The Constitutive Relationship , 1996 .

[25]  Hubertus J.M. Geijselaers,et al.  Numerical simulation of stresses due to solid state transformations. , 2003 .

[26]  M. Bibby,et al.  An algorithm for modelling microstructural development in weld heat-affected zones (part a) reaction kinetics , 1988 .

[27]  J. Devaux,et al.  A theoretical and numerical approach to the plastic behaviour of steels during phase transformations—I. Derivation of general relations , 1986 .

[28]  Morris Cohen,et al.  Criterion for the action of applied stress in the martensitic transformation , 1953 .

[29]  Greger Bergman,et al.  A finite element model for thermomechanical analysis of sheet metal forming , 2004 .

[30]  Frank P. Incropera,et al.  Fundamentals of Heat and Mass Transfer , 1981 .

[31]  Y. Tomota,et al.  Application of the secant method to prediction of flow curves in multi-microstructure steels , 1997 .

[32]  Yiyi Li,et al.  Coupled simulation of the influence of austenite deformation on the subsequent isothermal austenite–ferrite transformation , 2006 .

[33]  R. T. Haftka,et al.  Selecting step sizes in sensitivity analysis by finite differences , 1985 .

[34]  T. R. Meadowcroft,et al.  Flow stress modeling and warm rolling simulation behavior of two Ti–Nb interstitial-free steels in the ferrite region , 2001 .

[35]  J. Jullien,et al.  Experimental results on classical plasticity of steels subjected to structural transformations , 2004 .

[36]  K. Bathe Finite Element Procedures , 1995 .

[37]  J. Jonas,et al.  Flow stress and substructural change during the transient deformation of Armco iron and silicon steel , 1971 .

[38]  Y. Fung,et al.  Classical and Computational Solid Mechanics , 2001 .

[39]  L. Karlsson,et al.  Microstructural Predictions Including Arbitrary Thermal Histories, Reaustenization and Carbon Segregation Effects , 1996 .

[40]  Greger Bergman,et al.  VERIFICATION OF THERMOMECHANICAL MATERIAL MODELS BY THIN-PLATE QUENCHING SIMULATIONS , 1997 .

[41]  T. Hughes Numerical Implementation of Constitutive Models: Rate-Independent Deviatoric Plasticity , 1984 .

[42]  Mats Oldenburg,et al.  Dimensional Changes and Microstructural Evolution in a B-bearing Steel in the Simulated Forming and Quenching Process , 2001 .

[43]  R. Cook,et al.  Concepts and Applications of Finite Element Analysis , 1974 .

[44]  G. Beck,et al.  Estimation of the effect of stress/phase transformation interaction when calculating internal stress during martensitic quenching of steel. , 1982 .

[45]  E. Werner,et al.  A new view on transformation induced plasticity (TRIP) , 2000 .

[46]  D. P. Koistinen,et al.  A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels , 1959 .

[47]  Greger Bergman,et al.  Modelling and simulation of simultaneous forming and quenching , 1999 .

[48]  P. Hodgson,et al.  Conversion of the hot torsion test results into flow curve with multiple regimes of hardening , 2004 .

[49]  M. Avrami Kinetics of Phase Change. I General Theory , 1939 .

[50]  Lakhdar Taleb,et al.  New investigations on transformation induced plasticity and its interaction with classical plasticity , 2006 .

[51]  J. Devaux,et al.  Mathematical modelling of transformation plasticity in steels I: Case of ideal-plastic phases , 1989 .

[52]  S. Nemat-Nasser Experimentally-based Micromechanical Modeling of Metal Plasticity with Homogenization from Micro-to Macro-scale Properties , 1999 .

[53]  K. P. Rao,et al.  Hot Deformation Studies On A Low-Carbon Steel: Part 2 - An Algorithm For The Flow Stress Determination Under Varying Process Conditions , 1996 .

[54]  M. Oldenburg,et al.  Material parameter estimation for boron steel from simultaneous cooling and compression experiments , 2005 .

[55]  Greger Bergman,et al.  Estimation of Material Parameters at Elevated Temperatures by Inverse Modelling of a Gleeble Experiment , 2003 .