Predicting the growth of glioblastoma multiforme spheroids using a multiphase porous media model

[1]  C. Giverso,et al.  Growing avascular tumours as elasto-plastic bodies by the theory of evolving natural configurations , 2015 .

[2]  Jaehong Key,et al.  Radiolabeled Polymeric Nanoconstructs Loaded with Docetaxel and Curcumin for Cancer Combinatorial Therapy and Nuclear Imaging , 2015 .

[3]  Triantafyllos Stylianopoulos,et al.  Stress-mediated progression of solid tumors: effect of mechanical stress on tissue oxygenation, cancer cell proliferation, and drug delivery , 2015, Biomechanics and Modeling in Mechanobiology.

[4]  Aude Michel,et al.  Mechanical induction of the tumorigenic β-catenin pathway by tumour growth pressure , 2015, Nature.

[5]  M Ferrari,et al.  A tumor growth model with deformable ECM , 2014, Physical biology.

[6]  J. Joanny,et al.  Compressive stress inhibits proliferation in tumor spheroids through a volume limitation. , 2014, Biophysical journal.

[7]  R. Jain,et al.  The role of mechanical forces in tumor growth and therapy. , 2014, Annual review of biomedical engineering.

[8]  Mauro Ferrari,et al.  Three phase flow dynamics in tumor growth , 2014 .

[9]  William G. Gray,et al.  Introduction to the Thermodynamically Constrained Averaging Theory for Porous Medium Systems , 2014 .

[10]  B. Ross,et al.  Mathematical Modeling of PDGF-Driven Glioblastoma Reveals Optimized Radiation Dosing Schedules , 2014, Cell.

[11]  L. LongoDan Harrisons principles of internal medicine , 2013 .

[12]  Annaïck Desmaison,et al.  Mechanical Stress Impairs Mitosis Progression in Multi-Cellular Tumor Spheroids , 2013, PloS one.

[13]  R. Jain,et al.  Strategies for advancing cancer nanomedicine. , 2013, Nature materials.

[14]  C. Allen,et al.  Multicellular Tumor Spheroids for Evaluation of Cytotoxicity and Tumor Growth Inhibitory Effects of Nanomedicines In Vitro: A Comparison of Docetaxel-Loaded Block Copolymer Micelles and Taxotere® , 2013, PloS one.

[15]  Carsten Werner,et al.  A practical guide to quantify cell adhesion using single-cell force spectroscopy. , 2013, Methods.

[16]  Jean-Michel Siaugue,et al.  Mechanical control of cell flow in multicellular spheroids. , 2013, Physical review letters.

[17]  Luigi Preziosi,et al.  Mechanobiology of interfacial growth , 2013 .

[18]  L. Preziosi,et al.  Mechano-transduction in tumour growth modelling , 2013, The European Physical Journal E.

[19]  Luigi Preziosi,et al.  The interplay between stress and growth in solid tumors , 2012 .

[20]  Maria Vinci,et al.  Advances in establishment and analysis of three-dimensional tumor spheroid-based functional assays for target validation and drug evaluation , 2012, BMC Biology.

[21]  Laurent Malaquin,et al.  Stress clamp experiments on multicellular tumor spheroids. , 2011, Physical review letters.

[22]  Luigi Preziosi,et al.  A Multiphase Model of Tumour and Tissue Growth Including Cell Adhesion and Plastic Re-organisation , 2011 .

[23]  M. Ferrari,et al.  What does physics have to do with cancer? , 2011, Nature Reviews Cancer.

[24]  Hans G Othmer,et al.  The role of the microenvironment in tumor growth and invasion. , 2011, Progress in biophysics and molecular biology.

[25]  R. Jain,et al.  Delivering nanomedicine to solid tumors , 2010, Nature Reviews Clinical Oncology.

[26]  Christopher W Mount,et al.  The delivery of doxorubicin to 3-D multicellular spheroids and tumors in a murine xenograft model using tumor-penetrating triblock polymeric micelles. , 2010, Biomaterials.

[27]  O. Röhrle,et al.  Computational Continuum Biomechanics with Application to Swelling Media and Growth Phenomena , 2009 .

[28]  L. Preziosi,et al.  Cell adhesion mechanisms and stress relaxation in the mechanics of tumours , 2009, Biomechanics and modeling in mechanobiology.

[29]  Luigi Preziosi,et al.  Contact inhibition of growth described using a multiphase model and an individual cell based model , 2009, Appl. Math. Lett..

[30]  L. Preziosi,et al.  Multiphase modelling of tumour growth and extracellular matrix interaction: mathematical tools and applications , 2009, Journal of mathematical biology.

[31]  R. Jain,et al.  Micro-Environmental Mechanical Stress Controls Tumor Spheroid Size and Morphology by Suppressing Proliferation and Inducing Apoptosis in Cancer Cells , 2009, PloS one.

[32]  J. Jardin,et al.  Casein micelle dispersions under osmotic stress. , 2009, Biophysical journal.

[33]  H. Frieboes,et al.  Three-dimensional multispecies nonlinear tumor growth--I Model and numerical method. , 2008, Journal of theoretical biology.

[34]  Daniel J. Muller,et al.  Single-cell force spectroscopy , 2008, Journal of Cell Science.

[35]  S. Jonathan Chapman,et al.  Mathematical Models of Avascular Tumor Growth , 2007, SIAM Rev..

[36]  M. Chaplain,et al.  Mathematical modelling of the loss of tissue compression responsiveness and its role in solid tumour development. , 2006, Mathematical medicine and biology : a journal of the IMA.

[37]  I. Tannock,et al.  The penetration of anticancer drugs through tumor tissue as a function of cellular adhesion and packing density of tumor cells. , 2006, Cancer research.

[38]  Daniel J. Muller,et al.  Measuring cell adhesion forces of primary gastrulating cells from zebrafish using atomic force microscopy , 2005, Journal of Cell Science.

[39]  D A Weitz,et al.  Glioma expansion in collagen I matrices: analyzing collagen concentration-dependent growth and motility patterns. , 2005, Biophysical journal.

[40]  Cass T. Miller,et al.  Thermodynamically constrained averaging theory approach for modeling flow and transport phenomena in porous medium systems: 1. Motivation and overview , 2005 .

[41]  D Ambrosi,et al.  The role of stress in the growth of a multicell spheroid , 2004, Journal of mathematical biology.

[42]  R. Jain,et al.  Solid stress generated by spheroid growth estimated using a linear poroelasticity model. , 2003, Microvascular research.

[43]  L. Preziosi,et al.  Modelling Solid Tumor Growth Using the Theory of Mixtures , 2001, Mathematical medicine and biology : a journal of the IMA.

[44]  R. Jain,et al.  Role of extracellular matrix assembly in interstitial transport in solid tumors. , 2000, Cancer research.

[45]  H Schindler,et al.  Cadherin interaction probed by atomic force microscopy. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[46]  Paolo A. Netti,et al.  Solid stress inhibits the growth of multicellular tumor spheroids , 1997, Nature Biotechnology.

[47]  B. Cabane,et al.  Osmotic pressure of latex dispersions , 1994 .

[48]  S. V. Sotirchos,et al.  Variations in tumor cell growth rates and metabolism with oxygen concentration, glucose concentration, and extracellular pH , 1992, Journal of cellular physiology.

[49]  S. V. Sotirchos,et al.  Mathematical modelling of microenvironment and growth in EMT6/Ro multicellular tumour spheroids , 1992, Cell proliferation.

[50]  R K Jain,et al.  Determinants of tumor blood flow: a review. , 1988, Cancer research.

[51]  J. Bigby Harrison's Principles of Internal Medicine , 1988 .

[52]  J. Freyer,et al.  Regulation of growth saturation and development of necrosis in EMT6/Ro multicellular spheroids by the glucose and oxygen supply. , 1986, Cancer research.

[53]  J. P. Freyer,et al.  Influence of glucose and oxygen supply conditions on the oxygenation of multicellular spheroids. , 1986, British Journal of Cancer.

[54]  R F Kallman,et al.  Migration and internalization of cells and polystyrene microsphere in tumor cell spheroids. , 1982, Experimental cell research.

[55]  R. Sutherland,et al.  Oxygen tensions in multicell spheroids of two cell lines. , 1982, British Journal of Cancer.

[56]  J. Carlsson,et al.  A proliferation gradient in three‐dimensional colonies of cultured human glioma cells , 1977, International journal of cancer.

[57]  J. Folkman,et al.  SELF-REGULATION OF GROWTH IN THREE DIMENSIONS , 1973, The Journal of experimental medicine.

[58]  Cass T. Miller,et al.  A multiphase model for three-dimensional tumor growth , 2013, New journal of physics.

[59]  Jacques Prost,et al.  Supplements to : Isotropic stress reduces cell proliferation in tumor spheroids , 2011 .

[60]  Anthony S. Fauci,et al.  Comprar Harrison's Principles of Internal Medicine. 18th Ed. 2 Volúmenes | Dennis Kasper | 9780071748896 | Mcgraw-Hill Education , 2011 .

[61]  H. Frieboes,et al.  INVITED ARTICLE: Nonlinear modelling of cancer: bridging the gap between cells and tumours , 2010 .

[62]  Luigi Preziosi,et al.  Multiphase and Multiscale Trends in Cancer Modelling , 2009 .

[63]  B. Schrefler,et al.  The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media , 1998 .

[64]  Robert L. Sutherland,et al.  Spheroids in Cancer Research , 1984, Recent Results in Cancer Research.

[65]  J. Carlsson,et al.  Liquid-overlay culture of cellular spheroids. , 1984, Recent results in cancer research. Fortschritte der Krebsforschung. Progres dans les recherches sur le cancer.

[66]  H. Greenspan On the growth and stability of cell cultures and solid tumors. , 1976, Journal of theoretical biology.

[67]  R. Sutherland,et al.  Growth of multicell spheroids in tissue culture as a model of nodular carcinomas. , 1971, Journal of the National Cancer Institute.