Mitochondria regulate autophagy by conserved signalling pathways

[1]  H. Abeliovich,et al.  Induction of autophagic flux by amino acid deprivation is distinct from nitrogen starvation-induced macroautophagy , 2010, Autophagy.

[2]  A. Cuervo,et al.  Autophagy gone awry in neurodegenerative diseases , 2010, Nature Neuroscience.

[3]  D. Westaway,et al.  Lysosomal Proteolysis and Autophagy Require Presenilin 1 and Are Disrupted by Alzheimer-Related PS1 Mutations , 2010, Cell.

[4]  R. Youle,et al.  Parkin overexpression selects against a deleterious mtDNA mutation in heteroplasmic cybrid cells , 2010, Proceedings of the National Academy of Sciences.

[5]  Di Chen,et al.  With TOR, less is more: a key role for the conserved nutrient-sensing TOR pathway in aging. , 2010, Cell metabolism.

[6]  P. Moreira,et al.  Mitochondrial control of autophagic lysosomal pathway in Alzheimer's disease , 2010, Experimental Neurology.

[7]  D. Klionsky,et al.  Positive or negative roles of different cyclin-dependent kinase Pho85-cyclin complexes orchestrate induction of autophagy in Saccharomyces cerevisiae. , 2010, Molecular cell.

[8]  E. Morselli,et al.  Mitochondrial gateways to cancer. , 2010, Molecular aspects of medicine.

[9]  Fabienne C. Fiesel,et al.  PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1 , 2010, Nature Cell Biology.

[10]  Atsushi Tanaka,et al.  PINK1 Is Selectively Stabilized on Impaired Mitochondria to Activate Parkin , 2010, PLoS biology.

[11]  Ted M. Dawson,et al.  PINK1-dependent recruitment of Parkin to mitochondria in mitophagy , 2009, Proceedings of the National Academy of Sciences.

[12]  N. Oshiro,et al.  Tor Directly Controls the Atg1 Kinase Complex To Regulate Autophagy , 2009, Molecular and Cellular Biology.

[13]  D. Klionsky,et al.  Regulation mechanisms and signaling pathways of autophagy. , 2009, Annual review of genetics.

[14]  S. J. Deminoff,et al.  The Tor and PKA signaling pathways independently target the Atg1/Atg13 protein kinase complex to control autophagy , 2009, Proceedings of the National Academy of Sciences.

[15]  F. Reggiori,et al.  Regulation of autophagy in yeast Saccharomyces cerevisiae. , 2009, Biochimica et biophysica acta.

[16]  Elizabeth A Miller,et al.  Collapse of proteostasis represents an early molecular event in Caenorhabditis elegans aging , 2009, Proceedings of the National Academy of Sciences.

[17]  E. Morselli,et al.  Anti- and pro-tumor functions of autophagy. , 2009, Biochimica et biophysica acta.

[18]  P. Codogno,et al.  Autophagy: Regulation and role in disease , 2009, Critical reviews in clinical laboratory sciences.

[19]  Y. Ohsumi,et al.  Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy. , 2009, Developmental cell.

[20]  D. Klionsky,et al.  Atg32 is a mitochondrial protein that confers selectivity during mitophagy. , 2009, Developmental cell.

[21]  M. Beal,et al.  Mitochondrial dysfunction in the limelight of Parkinson's disease pathogenesis. , 2009, Biochimica et biophysica acta.

[22]  Yoshiaki Kamada,et al.  Dynamics and diversity in autophagy mechanisms: lessons from yeast , 2009, Nature Reviews Molecular Cell Biology.

[23]  D. Klionsky,et al.  Tap42-associated protein phosphatase type 2A negatively regulates induction of autophagy , 2009, Autophagy.

[24]  Ronald W. Davis,et al.  A Genome-Wide Screen for Regulators of TORC1 in Response to Amino Acid Starvation Reveals a Conserved Npr2/3 Complex , 2009, PLoS genetics.

[25]  M. Hall,et al.  Identification of the rapamycin-sensitive phosphorylation sites within the Ser/Thr-rich domain of the yeast Npr1 protein kinase. , 2008, Rapid communications in mass spectrometry : RCM.

[26]  R. Youle,et al.  Parkin is recruited selectively to impaired mitochondria and promotes their autophagy , 2008, The Journal of cell biology.

[27]  P. Kane,et al.  Cardiolipin mediates cross-talk between mitochondria and the vacuole. , 2008, Molecular biology of the cell.

[28]  M. Peter,et al.  Nutrient signals driving cell growth. , 2008, Current opinion in cell biology.

[29]  D. Klionsky,et al.  Mitophagy in Yeast Occurs through a Selective Mechanism* , 2008, Journal of Biological Chemistry.

[30]  James R Broach,et al.  How Saccharomyces responds to nutrients. , 2008, Annual review of genetics.

[31]  D. Klionsky,et al.  Atg8 controls phagophore expansion during autophagosome formation. , 2008, Molecular biology of the cell.

[32]  J. Guan,et al.  FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells , 2008, The Journal of cell biology.

[33]  Y. Ohsumi,et al.  Organization of the pre-autophagosomal structure responsible for autophagosome formation. , 2008, Molecular biology of the cell.

[34]  A. Brech,et al.  Promoting basal levels of autophagy in the nervous system enhances longevity and oxidant resistance in adult Drosophila , 2008, Autophagy.

[35]  Min Wu,et al.  Fission and selective fusion govern mitochondrial segregation and elimination by autophagy , 2008, The EMBO journal.

[36]  D. Klionsky,et al.  The Atg1 kinase complex is involved in the regulation of protein recruitment to initiate sequestering vesicle formation for nonspecific autophagy in Saccharomyces cerevisiae. , 2007, Molecular biology of the cell.

[37]  J. Broach,et al.  Protein kinase A and Sch9 cooperatively regulate induction of autophagy in Saccharomyces cerevisiae. , 2007, Molecular biology of the cell.

[38]  D. Klionsky,et al.  Autophagosome formation: core machinery and adaptations , 2007, Nature Cell Biology.

[39]  S. Tooze,et al.  siRNA Screening of the Kinome Identifies ULK1 as a Multidomain Modulator of Autophagy* , 2007, Journal of Biological Chemistry.

[40]  D. Klionsky,et al.  Autophagy and Human Disease , 2007, Cell cycle.

[41]  P. Walter,et al.  Signal integration in the endoplasmic reticulum unfolded protein response , 2007, Nature Reviews Molecular Cell Biology.

[42]  K. Nowikovsky,et al.  Mdm38 protein depletion causes loss of mitochondrial K+/H+ exchange activity, osmotic swelling and mitophagy , 2007, Cell Death and Differentiation.

[43]  Z. Elazar,et al.  Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4 , 2007, The EMBO journal.

[44]  B. Salin,et al.  Selective and Non-Selective Autophagic Degradation of Mitochondria in Yeast , 2007, Autophagy.

[45]  Daniel J. Klionsky,et al.  Aup1p, a Yeast Mitochondrial Protein Phosphatase Homolog, Is Required for Efficient Stationary Phase Mitophagy and Cell Survival* , 2007, Journal of Biological Chemistry.

[46]  Y. Ohsumi,et al.  Hierarchy of Atg proteins in pre‐autophagosomal structure organization , 2007, Genes to cells : devoted to molecular & cellular mechanisms.

[47]  S. J. Deminoff,et al.  Using Substrate-Binding Variants of the cAMP-Dependent Protein Kinase to Identify Novel Targets and a Kinase Domain Important for Substrate Interactions in Saccharomyces cerevisiae , 2006, Genetics.

[48]  Hideyuki Okano,et al.  Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice , 2006, Nature.

[49]  Masaaki Komatsu,et al.  Loss of autophagy in the central nervous system causes neurodegeneration in mice , 2006, Nature.

[50]  T. Powers,et al.  Coordinate regulation of multiple and distinct biosynthetic pathways by TOR and PKA kinases in S. cerevisiae , 2006, Current Genetics.

[51]  S. J. Deminoff,et al.  An evolutionary proteomics approach identifies substrates of the cAMP-dependent protein kinase. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[52]  S. Funes,et al.  Biogenesis of cytochrome oxidase-sophisticated assembly lines in the mitochondrial inner membrane. , 2005, Gene.

[53]  M. Priault,et al.  Impairing the bioenergetic status and the biogenesis of mitochondria triggers mitophagy in yeast , 2005, Cell Death and Differentiation.

[54]  Masaaki Komatsu,et al.  Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice , 2005, The Journal of cell biology.

[55]  Yoshiaki Kamada,et al.  Atg17 functions in cooperation with Atg1 and Atg13 in yeast autophagy. , 2005, Molecular biology of the cell.

[56]  M. Rigoulet,et al.  The yeast cAMP protein kinase Tpk3p is involved in the regulation of mitochondrial enzymatic content during growth. , 2005, Biochimica et biophysica acta.

[57]  R. Tsien,et al.  Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein , 2004, Nature Biotechnology.

[58]  Stéphen Manon,et al.  Uth1p Is Involved in the Autophagic Degradation of Mitochondria* , 2004, Journal of Biological Chemistry.

[59]  D. Klionsky,et al.  Cargo Proteins Facilitate the Formation of Transport Vesicles in the Cytoplasm to Vacuole Targeting Pathway* , 2004, Journal of Biological Chemistry.

[60]  D. Klionsky,et al.  The Ras/cAMP-dependent Protein Kinase Signaling Pathway Regulates an Early Step of the Autophagy Process in Saccharomyces cerevisiae* , 2004, Journal of Biological Chemistry.

[61]  W. Neupert,et al.  Atp10p Assists Assembly of Atp6p into the F0 Unit of the Yeast Mitochondrial ATPase* , 2004, Journal of Biological Chemistry.

[62]  Chao Zhang,et al.  Chemical genetic analysis of Apg1 reveals a non-kinase role in the induction of autophagy. , 2003, Molecular biology of the cell.

[63]  M. Côrte-Real,et al.  Assessment of mitochondrial membrane potential in yeast cell populations by flow cytometry. , 2001, Microbiology.

[64]  D. Klionsky,et al.  Cvt9/Gsa9 Functions in Sequestering Selective Cytosolic Cargo Destined for the Vacuole , 2001, The Journal of cell biology.

[65]  X. Zheng,et al.  Regulation of APG14 Expression by the GATA-type Transcription Factor Gln3p* , 2001, The Journal of Biological Chemistry.

[66]  N. Chaffey Red fluorescent protein , 2001 .

[67]  D. Klionsky,et al.  Dissection of Autophagosome Biogenesis into Distinct Nucleation and Expansion Steps , 2000, The Journal of cell biology.

[68]  Kazuya Nagano,et al.  Tor-Mediated Induction of Autophagy via an Apg1 Protein Kinase Complex , 2000, The Journal of cell biology.

[69]  T. Lang,et al.  Autophagy and the cvt Pathway Both Depend onAUT9 , 2000, Journal of bacteriology.

[70]  D. Klionsky,et al.  The Itinerary of a Vesicle Component, Aut7p/Cvt5p, Terminates in the Yeast Vacuole via the Autophagy/Cvt Pathways* , 2000, The Journal of Biological Chemistry.

[71]  S. Schreiber,et al.  Rapamycin-modulated transcription defines the subset of nutrient-sensitive signaling pathways directly controlled by the Tor proteins. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[72]  Takeshi Noda,et al.  Formation Process of Autophagosome Is Traced with Apg8/Aut7p in Yeast , 1999, The Journal of cell biology.

[73]  N. Mizushima,et al.  Apg7p/Cvt2p: A novel protein-activating enzyme essential for autophagy. , 1999, Molecular biology of the cell.

[74]  A. Schmidt,et al.  The TOR nutrient signalling pathway phosphorylates NPR1 and inhibits turnover of the tryptophan permease , 1998, The EMBO journal.

[75]  P. Philippsen,et al.  Additional modules for versatile and economical PCR‐based gene deletion and modification in Saccharomyces cerevisiae , 1998, Yeast.

[76]  Takeshi Noda,et al.  Tor, a Phosphatidylinositol Kinase Homologue, Controls Autophagy in Yeast* , 1998, The Journal of Biological Chemistry.

[77]  M Aldea,et al.  A Set of Vectors with a Tetracycline‐Regulatable Promoter System for Modulated Gene Expression in Saccharomyces cerevisiae , 1997, Yeast.

[78]  A. Matsuura,et al.  Analyses of APG13 gene involved in autophagy in yeast, Saccharomyces cerevisiae. , 1997, Gene.

[79]  A. Matsuura,et al.  Apg1p, a novel protein kinase required for the autophagic process in Saccharomyces cerevisiae. , 1997, Gene.

[80]  G. Rödel Translational activator proteins required for cytochrome b synthesis in Saccharomyces cerevisiae , 1997, Current Genetics.

[81]  A. Matsuura,et al.  Acidification of vacuoles is required for autophagic degradation in the yeast, Saccharomyces cerevisiae. , 1997, Journal of biochemistry.

[82]  Y. Ohsumi,et al.  Isolation and characterization of autophagy‐defective mutants of Saccharomyces cerevisiae , 1993, FEBS letters.

[83]  S. Tsuboi,et al.  Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction , 1992, The Journal of cell biology.

[84]  G. Faye,et al.  The MSS51 gene product is required for the translation of the COX1 mRNA in yeast mitochondria , 1990, Molecular and General Genetics MGG.

[85]  S. Ackerman,et al.  ATP10, a yeast nuclear gene required for the assembly of the mitochondrial F1-F0 complex. , 1990, The Journal of biological chemistry.

[86]  M. Costanzo,et al.  Specific translational activation by nuclear gene products occurs in the 5' untranslated leader of a yeast mitochondrial mRNA. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[87]  T. Fox,et al.  PET111, a Saccharomyces cerevisiae nuclear gene required for translation of the mitochondrial mRNA encoding cytochrome c oxidase subunit II. , 1987, Genetics.

[88]  M. Wigler,et al.  In yeast, RAS proteins are controlling elements of adenylate cyclase , 1985, Cell.

[89]  M L Walsh,et al.  Monitoring of relative mitochondrial membrane potential in living cells by fluorescence microscopy , 1981, The Journal of cell biology.

[90]  A. J. Lambert,et al.  Reactive oxygen species production by mitochondria. , 2009, Methods in molecular biology.

[91]  T. Stevens,et al.  Composition and assembly of the yeast vacuolar H(+)-ATPase complex. , 2000, The Journal of experimental biology.

[92]  N. Glab,et al.  Discrimination of respiratory dysfunction in yeast mutants by confocal microscopy, image, and flow cytometry. , 1996, Cytometry.

[93]  L. B. Chen,et al.  Mitochondrial membrane potential in living cells. , 1988, Annual review of cell biology.