Reflections on Zeilinger–Brukner Information Interpretation of Quantum Mechanics

In this short review I present my personal reflections on Zeilinger–Brukner information interpretation of quantum mechanics (QM).In general, this interpretation is very attractive for me. However, its rigid coupling to the notion of irreducible quantum randomness is a very complicated issue which I plan to address in more detail. This note may be useful for general public interested in quantum foundations, especially because I try to analyze essentials of the information interpretation critically (i.e., not just emphasizing its advantages as it is commonly done). This review is written in non-physicist friendly manner. Experts actively exploring this interpretation may be interested in the paper as well, as in the comments of “an external observer” who have been monitoring the development of this approach to QM during the last 18 years. The last part of this review is devoted to the general methodology of science with references to views of de Finetti, Wigner, and Peres.

[1]  Gregg Jaeger,et al.  Quantum Objects: Non-Local Correlation, Causality and Objective Indefiniteness in the Quantum World , 2013 .

[2]  D. Greenberger,et al.  Whose knowledge? , 2001 .

[3]  Giulio Chiribella,et al.  Informational axioms for quantum theory , 2012 .

[4]  Andrei Khrennikov,et al.  Ubiquitous Quantum Structure , 2010 .

[5]  Č. Brukner,et al.  Quantum Theory and Beyond: Is Entanglement Special? , 2009, 0911.0695.

[6]  W. Greiner Mathematical Foundations of Quantum Mechanics I , 1993 .

[7]  Giacomo Mauro D'Ariano Physics as Information Processing , 2010 .

[8]  Marco Zaopo Informational Axioms for Quantum Theory , 2012 .

[9]  Andrei Khrennikov,et al.  ORIGIN OF QUANTUM PROBABILITIES , 2001 .

[10]  Andrei Khrennikov V\"axj\"o Interpretation of Quantum Mechanics , 2002 .

[11]  Andrei Khrennikov V\"axj\"o interpretation-2003: realism of contexts , 2004 .

[12]  Markus P. Mueller,et al.  A derivation of quantum theory from physical requirements , 2010, 1004.1483.

[13]  Yoshiharu Tanaka,et al.  Quantum Adaptivity in Biology: From Genetics to Cognition , 2015, Springer Netherlands.

[14]  S. Wehner,et al.  Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres , 2015, Nature.

[15]  Caslav Brukner,et al.  On the Quantum Measurement Problem , 2015, 1507.05255.

[16]  Louis Marchildon,et al.  Why I am not a QBist , 2014, 1403.1146.

[17]  Andrei Khrennikov,et al.  Ubiquitous Quantum Structure: From Psychology to Finance , 2010 .

[18]  Johannes Kofler,et al.  Quantum Information and Randomness , 2010 .

[19]  N. David Mermin,et al.  Boojums All The Way Through , 1990 .

[20]  Caslav Brukner,et al.  Information Invariance and Quantum Probabilities , 2009, 0905.0653.

[21]  Andrei Khrennikov,et al.  Reality Without Realism: On the Ontological and Epistemological Architecture of Quantum Mechanics , 2015 .

[22]  Arkady Plotnitsky,et al.  Niels Bohr and Complementarity: An Introduction , 2012 .

[23]  A. Zeilinger,et al.  Significant-Loophole-Free Test of Bell's Theorem with Entangled Photons. , 2015, Physical review letters.

[24]  C. Fuchs,et al.  Quantum probabilities as Bayesian probabilities , 2001, quant-ph/0106133.

[25]  Arkady Plotnitsky Niels Bohr and Complementarity , 2012 .

[26]  Marek Zukowski,et al.  The Essence of Entanglement , 2001, Fundamental Theories of Physics.

[27]  Caslav Brukner,et al.  OPERATIONALLY INVARIANT INFORMATION IN QUANTUM MEASUREMENTS , 1999 .

[28]  Andrei Khrennikov Linear representations of probabilistic transformations induced by context transitions , 2001 .

[29]  A. Zeilinger A Foundational Principle for Quantum Mechanics , 1999, Synthese Library.

[30]  Andrei Khrennikov,et al.  Interpretations of Probability , 1999 .

[31]  Andrei Khrennikov,et al.  Vaxjo Interpretation of Quantum Mechanics , 2002 .

[32]  E. Knill,et al.  A strong loophole-free test of local realism , 2015, 2016 Conference on Lasers and Electro-Optics (CLEO).

[33]  Andrei Khrennikov,et al.  Contextual Approach to Quantum Formalism , 2009 .

[34]  Yoshiharu Tanaka,et al.  Quantum Information Biology: From Information Interpretation of Quantum Mechanics to Applications in Molecular Biology and Cognitive Psychology , 2015, Foundations of Physics.

[35]  C. Fuchs Quantum Mechanics as Quantum Information (and only a little more) , 2002, quant-ph/0205039.

[36]  Niels Bohr,et al.  The Causality Problem in Atomic Physics , 1958 .

[37]  Christopher A. Fuchs Delirium Quantum Or, where I will take quantum mechanics if it will let me , 2007 .

[38]  N. David Mermin,et al.  An introduction to QBism with an application to the locality of quantum mechanics , 2013, 1311.5253.

[39]  E. Schrödinger Die gegenwärtige Situation in der Quantenmechanik , 1935, Naturwissenschaften.

[40]  Giacomo Mauro D'Ariano,et al.  Operational Axioms for Quantum Mechanics , 2006, quant-ph/0611094.

[41]  B. D. Finetti,et al.  Philosophical Lectures on Probability , 2008 .

[42]  Caslav Brukner,et al.  Information and Fundamental Elements of the Structure of Quantum Theory , 2002, quant-ph/0212084.

[43]  C. Fuchs,et al.  A Quantum-Bayesian Route to Quantum-State Space , 2009, 0912.4252.

[44]  Anton Zeilinger,et al.  Quantum Physics as a Science of Information , 2005 .

[45]  Philipp A Hoehn,et al.  Toolbox for reconstructing quantum theory from rules on information acquisition , 2014, 1412.8323.

[46]  G. D’Ariano,et al.  Probabilistic theories with purification , 2009, 0908.1583.

[47]  J. Neumann Mathematical Foundations of Quantum Mechanics , 1955 .

[48]  Aaron D. O’Connell Dance of the Photons: From Einstein to Quantum Teleportation , 2011 .