Periosteum contains skeletal stem cells with high bone regenerative potential controlled by Periostin

[1]  S. Morrison,et al.  Leptin Receptor Promotes Adipogenesis and Reduces Osteogenesis by Regulating Mesenchymal Stromal Cells in Adult Bone Marrow. , 2016, Cell stem cell.

[2]  I. Weissman,et al.  Identification and characterization of an injury-induced skeletal progenitor , 2015, Proceedings of the National Academy of Sciences.

[3]  C. Colnot,et al.  Role of Muscle Stem Cells During Skeletal Regeneration , 2015, Stem cells.

[4]  P. Bianco,et al.  Skeletal stem cells , 2015, Development.

[5]  D. Sahoo,et al.  Identification and Specification of the Mouse Skeletal Stem Cell , 2015, Cell.

[6]  Jocelyn T. Compton,et al.  Gremlin 1 Identifies a Skeletal Stem Cell with Bone, Cartilage, and Reticular Stromal Potential , 2015, Cell.

[7]  Davide Heller,et al.  STRING v10: protein–protein interaction networks, integrated over the tree of life , 2014, Nucleic Acids Res..

[8]  H. Kronenberg,et al.  A Subset of Chondrogenic Cells Provides Early Mesenchymal Progenitors in Growing Bones , 2014, Nature Cell Biology.

[9]  W. Wang,et al.  High expression of periostin is dramatically associated with metastatic potential and poor prognosis of patients with osteosarcoma , 2014, World Journal of Surgical Oncology.

[10]  S. Morrison,et al.  Leptin-receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow. , 2014, Cell stem cell.

[11]  C. Ferretti,et al.  Periosteum derived stem cells for regenerative medicine proposals: Boosting current knowledge. , 2014, World journal of stem cells.

[12]  P. Frenette,et al.  Vasculature-associated cells expressing nestin in developing bones encompass early cells in the osteoblast and endothelial lineage. , 2014, Developmental cell.

[13]  Y. Kunisaki,et al.  Osterix marks distinct waves of primitive and definitive stromal progenitors during bone marrow development. , 2014, Developmental cell.

[14]  Janet L. Crane,et al.  Bone marrow mesenchymal stem cells and TGF-β signaling in bone remodeling. , 2014, The Journal of clinical investigation.

[15]  C. Colnot,et al.  Delayed Bone Regeneration Is Linked to Chronic Inflammation in Murine Muscular Dystrophy , 2014, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[16]  P. Garnero,et al.  Periostin Deficiency Increases Bone Damage and Impairs Injury Response to Fatigue Loading in Adult Mice , 2013, PloS one.

[17]  S. Matsuda,et al.  Periosteal cells are a major source of soft callus in bone fracture , 2013, Journal of Bone and Mineral Metabolism.

[18]  M. Tate,et al.  Current insights on the regenerative potential of the periosteum: Molecular, cellular, and endogenous engineering approaches , 2012, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[19]  Jan Schrooten,et al.  Engineering Vascularized Bone: Osteogenic and Proangiogenic Potential of Murine Periosteal Cells , 2012, Stem cells.

[20]  E. Jones,et al.  Markers for Characterization of Bone Marrow Multipotential Stromal Cells , 2012, Stem cells international.

[21]  Charles P. Lin,et al.  Endogenous bone marrow MSCs are dynamic, fate-restricted participants in bone maintenance and regeneration. , 2012, Cell stem cell.

[22]  Hong Peng,et al.  Interactions between cancer stem cells and their niche govern metastatic colonization , 2011, Nature.

[23]  S. Hopkinson,et al.  Faculty Opinions recommendation of Roles of epithelial cell-derived periostin in TGF-beta activation, collagen production, and collagen gel elasticity in asthma. , 2010 .

[24]  Geert Carmeliet,et al.  Osteoblast precursors, but not mature osteoblasts, move into developing and fractured bones along with invading blood vessels. , 2010, Developmental cell.

[25]  Ben D. MacArthur,et al.  Mesenchymal and haematopoietic stem cells form a unique bone marrow niche , 2010, Nature.

[26]  S. Muller,et al.  Roles of epithelial cell-derived periostin in TGF-β activation, collagen production, and collagen gel elasticity in asthma , 2010, Proceedings of the National Academy of Sciences.

[27]  C. Colnot,et al.  Bone morphogenetic protein 2 stimulates endochondral ossification by regulating periosteal cell fate during bone repair. , 2010, Bone.

[28]  D. Hamilton,et al.  Spatiotemporal expression of periostin during skin development and incisional wound healing: lessons for human fibrotic scar formation , 2010, Journal of Cell Communication and Signaling.

[29]  A. Miyawaki,et al.  Prospective identification, isolation, and systemic transplantation of multipotent mesenchymal stem cells in murine bone marrow , 2009, The Journal of experimental medicine.

[30]  M. Foti,et al.  The Matricellular Protein Periostin Is Required for Sost Inhibition and the Anabolic Response to Mechanical Loading and Physical Activity* , 2009, The Journal of Biological Chemistry.

[31]  A. Kawanami,et al.  Mice expressing GFP and CreER in osteochondro progenitor cells in the periosteum. , 2009, Biochemical and biophysical research communications.

[32]  M. Miga,et al.  Regenerative Effects of Transplanted Mesenchymal Stem Cells in Fracture Healing , 2009, Stem cells.

[33]  H. Blau,et al.  Self-renewal and expansion of single transplanted muscle stem cells , 2008, Nature.

[34]  J. Herzenberg,et al.  Periosteal Grafting for Congenital Pseudarthrosis of the Tibia: A Preliminary Report , 2008, Clinical orthopaedics and related research.

[35]  C. Colnot,et al.  Skeletal Cell Fate Decisions Within Periosteum and Bone Marrow During Bone Regeneration , 2008, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[36]  S. Badylak,et al.  A perivascular origin for mesenchymal stem cells in multiple human organs. , 2008, Cell stem cell.

[37]  R. Guldberg,et al.  A Perspective: Engineering Periosteum for Structural Bone Graft Healing , 2008, Clinical orthopaedics and related research.

[38]  P. Bianco,et al.  Mesenchymal stem cells: revisiting history, concepts, and assays. , 2008, Cell stem cell.

[39]  Ken Kumagai,et al.  Circulating cells with osteogenic potential are physiologically mobilized into the fracture healing site in the parabiotic mice model , 2008, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[40]  M. Fukayama,et al.  Periostin is essential for cardiac healing after acute myocardial infarction , 2008 .

[41]  M. Rudnicki,et al.  Niche regulation of muscle satellite cell self-renewal and differentiation. , 2008, Cell stem cell.

[42]  B. Sacchetti,et al.  Self-Renewing Osteoprogenitors in Bone Marrow Sinusoids Can Organize a Hematopoietic Microenvironment , 2007, Cell.

[43]  C. Colnot,et al.  Analyzing the cellular contribution of bone marrow to fracture healing using bone marrow transplantation in mice. , 2006, Biochemical and biophysical research communications.

[44]  Jian Q. Feng,et al.  periostin Null Mice Exhibit Dwarfism, Incisor Enamel Defects, and an Early-Onset Periodontal Disease-Like Phenotype , 2005, Molecular and Cellular Biology.

[45]  R. Guldberg,et al.  Periosteal Progenitor Cell Fate in Segmental Cortical Bone Graft Transplantations: Implications for Functional Tissue Engineering , 2005, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[46]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[47]  T. Partridge,et al.  Self-Renewal of the Adult Skeletal Muscle Satellite Cell , 2005, Cell cycle.

[48]  C. Colnot,et al.  Mechanisms of Action of Demineralized Bone Matrix in the Repair of Cortical Bone Defects , 2005, Clinical orthopaedics and related research.

[49]  C. Colnot,et al.  Distinguishing the contributions of the perichondrium, cartilage, and vascular endothelium to skeletal development. , 2004, Developmental biology.

[50]  D. Scadden,et al.  Osteoblastic cells regulate the haematopoietic stem cell niche , 2003, Nature.

[51]  Haiyang Huang,et al.  Identification of the haematopoietic stem cell niche and control of the niche size , 2003, Nature.

[52]  Jill A. Helms,et al.  Altered fracture repair in the absence of MMP9 , 2003, Development.

[53]  M. Hofker Faculty Opinions recommendation of PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. , 2003 .

[54]  H. Kronenberg,et al.  Developmental regulation of the growth plate , 2003, Nature.

[55]  A I Saeed,et al.  TM4: a free, open-source system for microarray data management and analysis. , 2003, BioTechniques.

[56]  David Botstein,et al.  Diversity, topographic differentiation, and positional memory in human fibroblasts , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[57]  C. Tabin,et al.  Expression of Cre recombinase in the developing mouse limb bud driven by a Prxl enhancer , 2002, Genesis.

[58]  S W O'Driscoll,et al.  The role of periosteum in cartilage repair. , 2001, Clinical orthopaedics and related research.

[59]  Theodore Miclau,et al.  Does adult fracture repair recapitulate embryonic skeletal formation? , 1999, Mechanisms of Development.

[60]  Lynda F. Bonewald,et al.  Identification and Characterization of a Novel Protein, Periostin, with Restricted Expression to Periosteum and Periodontal Ligament and Increased Expression by Transforming Growth Factor β , 1999 .

[61]  D. Botstein,et al.  Cluster analysis and display of genome-wide expression patterns. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[62]  Giuseppe M Peretti,et al.  Recapitulation of signals regulating embryonic bone formation during postnatal growth and in fracture repair , 1998, Mechanisms of Development.

[63]  A. Friedenstein,et al.  Bone marrow osteogenic stem cells: in vitro cultivation and transplantation in diffusion chambers , 1987, Cell and tissue kinetics.

[64]  Frank P Luyten,et al.  Uncovering the periosteum for skeletal regeneration: the stem cell that lies beneath. , 2015, Bone.

[65]  B. Hall Bones and cartilage : developmental and evolutionary skeletal biology , 2015 .

[66]  D. Prockop,et al.  Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. , 2006, Cytotherapy.

[67]  C. Lillehei,et al.  Neurologic and electroencephalographic studies in open heart surgery , 1959, Neurology.

[68]  B. Hall Introduction to Evolutionary Skeletal Biology , 2005 .

[69]  K. Horiuchi,et al.  Identification and characterization of a novel protein, periostin, with restricted expression to periosteum and periodontal ligament and increased expression by transforming growth factor beta. , 1999, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[70]  K. Doi,et al.  Vascularized periosteal bone graft from the supracondylar region of the femur , 1994, Microsurgery.

[71]  J. Peltonen,et al.  [Fracture healing]. , 1985, Duodecim; laaketieteellinen aikakauskirja.

[72]  H. B. Fell The Osteogenic Capacity in vitro of Periosteum and Endosteum Isolated from the Limb Skeleton of Fowl Embryos and Young Chicks. , 1932, Journal of anatomy.