Krylov integrators for Hamiltonian systems
暂无分享,去创建一个
[1] D. Duncan,et al. SYMPLECTIC FINITE DIFFERENCE APPROXIMATIONS OF THE NONLINEAR KLEIN–GORDON EQUATION∗ , 1997 .
[2] David S. Watkins,et al. On Hamiltonian and symplectic Lanczos processes , 2004 .
[3] C. Lubich. A variational splitting integrator for quantum molecular dynamics , 2004 .
[4] D. B. Duncan,et al. Sympletic Finite Difference Approximations of the Nonlinear Klein--Gordon Equation , 1997 .
[5] J. Nathan Kutz,et al. Bose-Einstein Condensates in Standing Waves , 2001 .
[6] Yousef Saad,et al. Efficient Solution of Parabolic Equations by Krylov Approximation Methods , 1992, SIAM J. Sci. Comput..
[7] L. Vázquez,et al. Analysis of Four Numerical Schemes for a Nonlinear Klein-Gordon Equation , 1990 .
[8] J. M. Sanz-Serna,et al. Conservation of integrals and symplectic structure in the integration of differential equations by multistep methods , 1992 .
[9] Elena Celledoni,et al. Preserving energy resp. dissipation in numerical PDEs using the "Average Vector Field" method , 2012, J. Comput. Phys..
[10] Volker Mehrmann,et al. Structure-Preserving Methods for Computing Eigenpairs of Large Sparse Skew-Hamiltonian/Hamiltonian Pencils , 2001, SIAM J. Sci. Comput..
[11] Ralph Abraham,et al. Foundations Of Mechanics , 2019 .
[12] L. Knizhnerman,et al. Two polynomial methods of calculating functions of symmetric matrices , 1991 .
[13] C. Lubich,et al. On Krylov Subspace Approximations to the Matrix Exponential Operator , 1997 .
[14] Marlis Hochbruck,et al. Exponential Integrators for Large Systems of Differential Equations , 1998, SIAM J. Sci. Comput..
[15] Timo Eirola,et al. Solution Methods for R-Linear Problems in Cn , 2003, SIAM J. Matrix Anal. Appl..
[16] P. Benner,et al. An Implicitly Restarted Symplectic Lanczos Method for the Hamiltonian Eigenvalue Problem , 1997 .
[17] M. Hochbruck,et al. Exponential integrators , 2010, Acta Numerica.
[18] E. Hairer,et al. Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .
[19] Y. Saad. Analysis of some Krylov subspace approximations to the matrix exponential operator , 1992 .
[20] Elena Celledoni,et al. Symmetric Exponential Integrators with an Application to the Cubic Schrödinger Equation , 2008, Found. Comput. Math..
[21] Tsuyoshi Murata,et al. {m , 1934, ACML.
[22] J C Bronski,et al. Bose-Einstein condensates in standing waves: the cubic nonlinear Schrödinger equation with a periodic potential. , 2001, Physical review letters.