A probabilistic scheduling period inventory model for deteriorating items with lead time

A probabilistic scheduling period inventory model is developed for continuously decaying items. The model assumes no shortages, deterministic lead time and a general deterioration function. The developed model is shown to be related to the similar model without lead time and also to the similar model for non-deteriorating items. Two special cases are considered and an example is also furnished.ZusammenfassungEs wird ein probabilistisches Lagerhaltungsmodell für sich stetig verschlechternde Güter entwickelt. Im Modell wird angenommen, da\ kein Mangel eintritt, die Verschlechterung durch eine allgemeine Funktion beschrieben wird und deterministische Lieferzeiten vorliegen. Es wird gezeigt, da\ das entwickelte Modell bekannte Modelle ohne Lieferzeiten sowie für sich nicht verschlechternde Güter als Spezialfälle enthält. Ferner werden zwei weitere Spezialfälle und ein numerisches Beispiel angegeben.

[1]  R. Misra,et al.  Optimum production lot size model for a system with deteriorating inventory , 1975 .

[2]  Y. K. Shah,et al.  On a probabilistic scheduling period inventory system for deteriorating items with lead time equal to one scheduling period , 1983 .

[3]  George C. Philip,et al.  A Generalized EOQ Model for Items with Weibull Distribution Deterioration , 1974 .

[4]  U. Dave,et al.  (T, Si) Policy Inventory Model for Deteriorating Items with Time Proportional Demand , 1981 .

[5]  Yoram Friedman,et al.  A Dynamic Lot-Size Model With Inventory Deterioration , 1978 .

[6]  Y. K. Shah An Order-Level Lot-Size Inventory Model for Deteriorating Items , 1977 .

[7]  M. C. Jaiswal,et al.  ( s, qp) System inventory model for deteriorating items , 1978 .

[8]  M. C. Jaiswal,et al.  A periodic review inventory model for items that deteriorate continuously in time , 1977 .

[9]  Morris A. Cohen Joint pricing and ordering policy for exponentially decaying inventory with known demand , 1977 .

[10]  Pandu R. Tadikamalla An EOQ inventory model for items with gamma distributed deterioration , 1978 .

[11]  Steven Nahmias,et al.  Approximating partial inverse moments for certain normal variates with an application to decaying inventories , 1978 .

[12]  Upendra Dave m-scheduling-period inventory model for deteriorating items with instantaneous demand , 1980 .

[13]  Steven Nahmias,et al.  A Heuristic Lot Size Reorder Point Model for Decaying Inventories , 1979 .