mid mediated beta-lactamase BIL-1. J Antimicrob Chemother 1992; 30: 119–27. 8. Gonzalez Leiza M, Perez-Diaz JC, Ayala J et al. Gene sequence and biochemical characterization of FOX-1 from Klebsiella pneumoniae, a new AmpC-type plasmid-mediated beta-lactamase with two molecular variants. Antimicrob Agents Chemother 1994; 38: 2150–7. 9. Jarlier V, Nicolas MH, Fournier G, Philippon A. Extended broadspectrum beta-lactamases conferring transferable resistance to newer beta-lactam agents in Enterobacteriaceae: hospital prevalence and susceptibility patterns. Rev Infect Dis 1988; 10: 867–78. 10. Cormican MG, Marshall SA, Jones RN. Detection of extendedspectrum beta-lactamase (ESBL)-producing strains by the Etest ESBL screen. J Clin Microbiol 1996; 34: 1880–4. 11. Jacoby GA, Sutton L. Properties of plasmids responsible for production of extended-spectrum beta-lactamases. Antimicrob Agents Chemother 1991; 35: 164–9. 12. Vatopoulos AC, Philippon A, Tzouvelekis LS, Komninou Z, Legakis NJ. Prevalence of a transferable SHV-5 type beta-lactamase in clinical isolates of Klebsiella pneumoniae and Escherichia coli in Greece. J Antimicrob Chemother 1990; 26: 635–48. 13. Philippon A, Labia R, Jacoby G. Extended-spectrum beta-lactamases. Antimicrob Agents Chemother 1989; 33: 1131–6. 14. Rice LB, Bonomo RA. Genetic and biochemical mechanisms of bacterial resistance to antimicrobial agents. In: Lorian V, ed. Antibiotics in Laboratory Medicine. Baltimore, MD: Williams & Wilkins, 1996: 453–501. 15. Martinez-Martinez L, Pascual A, Jacoby GA. Quinolone resistance from a transferable plasmid. Lancet 1998; 351: 797–9. 16. Pfaller MA, Hollis RJ, Sader HS. Chromosomal restriction fragment analysis by pulsed-field gel electrophoresis. In: Isenberg HD, ed. Clinical Microbiology Procedures Handbook. Volume (Suppl 1). Washington, DC: American Society for Microbiology, 1994: 10.5c.1–12. 17. Tenover FC, Arbeit RD, Goering RV, et al. Interpreting chromosomal DNA restriction patterns produced by pulsedfield gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol 1995; 33: 2233–9. 18. Meyer KS, Urban C, Eagan JA, Berger BJ, Rahal JJ. Nosocomial
[1]
J. Yao,et al.
Comparison of ribotyping, arbitrarily primed PCR, and pulsed-field gel electrophoresis for molecular typing of Listeria monocytogenes
,
1996,
Journal of clinical microbiology.
[2]
C. Buchrieser,et al.
Investigations related to the epidemic strain involved in the French listeriosis outbreak in 1992
,
1995,
Applied and environmental microbiology.
[3]
M. Bibi,et al.
La listériose humaine en Tunisie : deux nouveaux cas chez le nouveau-né
,
1994
.
[4]
P. Desjardins,et al.
Arbitrarily primed polymerase chain reaction provides rapid differentiation of Proteus mirabilis isolates from a pediatric hospital
,
1993,
Journal of clinical microbiology.
[5]
A. Audurier,et al.
A comparative study of randomly amplified polymorphic DNA analysis and conventional phage typing for epidemiological studies of Listeria monocytogenes isolates.
,
1992,
Research in microbiology.
[6]
A. Schuchat,et al.
Epidemiology of human listeriosis
,
1991,
Clinical Microbiology Reviews.
[7]
K. Livak,et al.
DNA polymorphisms amplified by arbitrary primers are useful as genetic markers.
,
1990,
Nucleic acids research.
[8]
T. Raju,et al.
Transmission of neonatal listeriosis in a delivery room.
,
1985,
American journal of diseases of children.
[9]
A. Campbell,et al.
LISTERIA MENINGITIS ACQUIRED BY CROSS-INFECTION IN A DELIVERY SUITE
,
1981,
The Lancet.