A draft genome sequence of the miniature parasitoid wasp, Megaphragma amalphitanum

Body size reduction, also known as miniaturization, is an important evolutionary process that affects a number of physiological and phenotypic traits and helps animals to conquer new ecological niches. However, this process is poorly understood at the molecular level. Here, we report genomic and transcriptomic features of arguably the smallest known insect – the parasitoid wasp, Megaphragma amalphitanum (Hymenoptera: Trichogrammatidae). In contrast to expectations, we find that the genome and transcriptome sizes of this parasitoid wasp are comparable to other members of the Chalcidoidea superfamily. Moreover, the gene content of M. amalphitanum compared to other chalcid wasps is remarkably conserved. Among the very rare cases of apparent gene loss is centrosomin, which encodes an important centrosome component; the absence of this protein might be related to the large number of anucleate neurons in M. amalphitanum. Intriguingly, we also observed significant changes in M. amalphitanum transposable element dynamics over time, whereby an initial burst was followed by suppression of activity, possibly due to a recent reinforcement of the genome defense machinery. Thus, while the M. amalphitanum genomic data reveal certain features that may be linked to the unusual biological properties of this organism, miniaturization is not associated with a large decrease in genome complexity.

[1]  R. Gibbs,et al.  Comparative genomics of the miniature wasp and pest control agent Trichogramma pretiosum , 2018, BMC biology.

[2]  Alexey M. Kozlov,et al.  Transcriptome sequence-based phylogeny of chalcidoid wasps (Hymenoptera: Chalcidoidea) reveals a history of rapid radiations, convergence, and evolutionary success. , 2018, Molecular phylogenetics and evolution.

[3]  P. Garrity,et al.  Ionotropic Receptor-dependent moist and dry cells control hygrosensation in Drosophila , 2017, eLife.

[4]  J. Raff,et al.  Structural Basis for Mitotic Centrosome Assembly in Flies , 2017, Cell.

[5]  Yu Zhou,et al.  Candidate chemosensory genes identified in the endoparasitoid Meteorus pulchricornis (Hymenoptera: Braconidae) by antennal transcriptome analysis. , 2017, Comparative biochemistry and physiology. Part D, Genomics & proteomics.

[6]  A. Polilov Anatomy of adult Megaphragma (Hymenoptera: Trichogrammatidae), one of the smallest insects, and new insight into insect miniaturization , 2017, PloS one.

[7]  Seán G. Brady,et al.  Phylogenomic Insights into the Evolution of Stinging Wasps and the Origins of Ants and Bees , 2017, Current Biology.

[8]  N. Ravin,et al.  Metagenomic analysis of microbial community of a parasitoid wasp Megaphragma amalphitanum , 2016, Genomics data.

[9]  K. Skryabin,et al.  Mitochondrial genome of Megaphragma amalphitanum (Hymenoptera: Trichogrammatidae) , 2016, Mitochondrial DNA. Part A, DNA mapping, sequencing, and analysis.

[10]  J. Ehlting,et al.  Transcriptome analysis provides insight into venom evolution in a seed‐parasitic wasp, Megastigmus spermotrophus , 2016, Insect molecular biology.

[11]  S. Richards,et al.  Comparative Genomics of a Parthenogenesis-Inducing Wolbachia Symbiont , 2016, G3: Genes, Genomes, Genetics.

[12]  T. Ahmed,et al.  Gene set of chemosensory receptors in the polyembryonic endoparasitoid Macrocentrus cingulum , 2016, Scientific Reports.

[13]  John R Carlson,et al.  Drosophila Chemoreceptors: A Molecular Interface Between the Chemical World and the Brain. , 2015, Trends in genetics : TIG.

[14]  Aravinthan D. T. Samuel,et al.  The Ionotropic Receptors IR21a and IR25a mediate cool sensing in Drosophila , 2015, bioRxiv.

[15]  S. Scheu,et al.  No Accumulation of Transposable Elements in Asexual Arthropods , 2015, Molecular biology and evolution.

[16]  Philip A. Ewels,et al.  Molecular signatures of plastic phenotypes in two eusocial insect species with simple societies , 2015, Proceedings of the National Academy of Sciences.

[17]  R. Benton Multigene Family Evolution: Perspectives from Insect Chemoreceptors. , 2015, Trends in ecology & evolution.

[18]  Evgeny M. Zdobnov,et al.  BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs , 2015, Bioinform..

[19]  K. White,et al.  Centrosomin represses dendrite branching by orienting microtubule nucleation , 2015, Nature Neuroscience.

[20]  A. Erives Genes conserved in bilaterians but jointly lost with Myc during nematode evolution are enriched in cell proliferation and cell migration functions , 2015, Development Genes and Evolution.

[21]  S. Asgari,et al.  Venom Proteins from Parasitoid Wasps and Their Biological Functions , 2015, Toxins.

[22]  Robert M. Waterhouse,et al.  Genomic signatures of evolutionary transitions from solitary to group living , 2015, Science.

[23]  S. Carroll Evo‐Devo and an Expanding Evolutionary Synthesis , 2015 .

[24]  H. Amrein,et al.  Drosophila Sugar Receptors in Sweet Taste Perception, Olfaction, and Internal Nutrient Sensing , 2015, Current Biology.

[25]  A. Polilov,et al.  Small is beautiful: features of the smallest insects and limits to miniaturization. , 2015, Annual review of entomology.

[26]  Yiping Hou,et al.  Involvement of the anucleate primary sterigmata protein FgApsB in vegetative differentiation, asexual development, nuclear migration, and virulence in Fusarium graminearum. , 2013, FEMS microbiology letters.

[27]  Elizabeth A. Murray,et al.  A phylogenetic analysis of the megadiverse Chalcidoidea (Hymenoptera) , 2013, Cladistics : the international journal of the Willi Hennig Society.

[28]  R. Benton,et al.  Ionotropic receptors (IRs): chemosensory ionotropic glutamate receptors in Drosophila and beyond. , 2013, Insect biochemistry and molecular biology.

[29]  Susan J. Brown,et al.  The i5K Initiative: advancing arthropod genomics for knowledge, human health, agriculture, and the environment. , 2013, The Journal of heredity.

[30]  T. Kaufman,et al.  Probing the Boundaries of Orthology: The Unanticipated Rapid Evolution of Drosophila centrosomin , 2013, Genetics.

[31]  T. Miyamoto,et al.  A Fructose Receptor Functions as a Nutrient Sensor in the Drosophila Brain , 2012, Cell.

[32]  Makedonka Mitreva,et al.  Silencing of germline-expressed genes by DNA elimination in somatic cells. , 2012, Developmental cell.

[33]  K. Kraaijeveld,et al.  Transposable element proliferation as a possible side effect of endosymbiont manipulations , 2012, Mobile genetic elements.

[34]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[35]  A. Polilov,et al.  The smallest insects evolve anucleate neurons. , 2011, Arthropod structure & development.

[36]  N. Friedman,et al.  Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data , 2011, Nature Biotechnology.

[37]  T. Flutre,et al.  Considering Transposable Element Diversification in De Novo Annotation Approaches , 2011, PloS one.

[38]  C. Feschotte,et al.  Promiscuous DNA: horizontal transfer of transposable elements and why it matters for eukaryotic evolution. , 2010, Trends in ecology & evolution.

[39]  T. Gibson,et al.  Ancient Protostome Origin of Chemosensory Ionotropic Glutamate Receptors and the Evolution of Insect Taste and Olfaction , 2010, PLoS genetics.

[40]  J. Werren,et al.  Insights into the venom composition of the ectoparasitoid wasp Nasonia vitripennis from bioinformatic and proteomic studies , 2010, Insect molecular biology.

[41]  H. Robertson,et al.  The insect chemoreceptor superfamily of the parasitoid jewel wasp Nasonia vitripennis , 2010, Insect molecular biology.

[42]  Timothy B Sackton,et al.  Functional and Evolutionary Insights from the Genomes of Three Parasitoid Nasonia Species , 2010, Science.

[43]  L. Vosshall,et al.  Variant Ionotropic Glutamate Receptors as Chemosensory Receptors in Drosophila , 2009, Cell.

[44]  F. Jiggins,et al.  The evolution of RNAi as a defence against viruses and transposable elements , 2008, Philosophical Transactions of the Royal Society B: Biological Sciences.

[45]  S. Carroll Evo-Devo and an Expanding Evolutionary Synthesis: A Genetic Theory of Morphological Evolution , 2008, Cell.

[46]  J. Heraty,et al.  A molecular phylogeny of the Trichogrammatidae (Hymenoptera: Chalcidoidea), with an evaluation of the utility of their male genitalia for higher level classification , 2007 .

[47]  J. Raff,et al.  Flies without Centrioles , 2006, Cell.

[48]  T. Gregory Synergy between sequence and size in Large-scale genomics , 2005, Nature Reviews Genetics.

[49]  R. Fischer,et al.  Role of the spindle-pole-body protein ApsB and the cortex protein ApsA in microtubule organization and nuclear migration in Aspergillus nidulans , 2005, Journal of Cell Science.

[50]  Leslie B. Vosshall,et al.  Or83b Encodes a Broadly Expressed Odorant Receptor Essential for Drosophila Olfaction , 2004, Neuron.

[51]  C. Stoeckert,et al.  OrthoMCL: identification of ortholog groups for eukaryotic genomes. , 2003, Genome research.

[52]  A. Akifyev,et al.  Chromatin Diminution Is a Key Process Explaining the Eukaryotic Genome Size Paradox and Some Mechanisms of Genetic Isolation , 2002, Russian Journal of Genetics.

[53]  P. Hebert,et al.  Evolutionary implications of the relationship between genome size and body size in flatworms and copepods , 2000, Heredity.

[54]  B. Jørgensen,et al.  Dense populations of a giant sulfur bacterium in Namibian shelf sediments. , 1999, Science.

[55]  W. Timberlake,et al.  Increased nuclear traffic chaos in hyphae of Aspergillus nidulans: molecular characterization of apsB and in vivo observation of nuclear behaviour , 1998, Molecular microbiology.

[56]  Mosè Manni,et al.  BUSCO: Assessing Genome Assembly and Annotation Completeness. , 2019, Methods in molecular biology.

[57]  A. Polilov,et al.  Peculiarities of the brain structure and ultrastructure in small insects related to miniaturization. 1. The smallest Coleoptera (Ptiliidae) , 2013 .

[58]  R. Stouthamer,et al.  The genetics and evolution of obligate reproductive parasitism in Trichogramma pretiosum infected with parthenogenesis-inducing Wolbachia , 2011, Heredity.

[59]  B. Pintureau,et al.  Parasitoïdes oophages et symbiotes de deux thrips européens , 1999 .

[60]  D. Wake,et al.  Miniaturization of Body Size: Organismal Consequences and Evolutionary Significance , 1993 .

[61]  Karl M. Glastad,et al.  Ecology, Evolution and Organismal Biology Publications Ecology, Evolution and Organismal Biology Genome, Transcriptome and Methylome Sequencing of a Primitively Eusocial Wasp Reveal a Greatly Reduced Dna Methylation System in a Social Insect Genome, Transcriptome and Methylome Sequencing of a Primit , 2022 .

[62]  A. Suarez,et al.  Bmc Evolutionary Biology the Evolution of Genome Size in Ants , 2022 .