Exceptional points of two-dimensional random walks at multiples of the cover time
暂无分享,去创建一个
[1] Marek Biskup,et al. A limit law for the most favorite point of simple random walk on a regular tree , 2021, 2111.09513.
[2] M. Biskup,et al. Exceptional points of discrete-time random walks in planar domains , 2019, Electronic Journal of Probability.
[3] A. Jego. Characterisation of Planar Brownian Multiplicative Chaos , 2019, Communications in Mathematical Physics.
[4] A. Dembo,et al. Limit law for the cover time of a random walk on a binary tree , 2019, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques.
[5] A. Cortines,et al. A Scaling Limit for the Cover Time of the Binary Tree , 2018, 1812.10101.
[6] A. Jego. Planar Brownian motion and Gaussian multiplicative chaos , 2018, The Annals of Probability.
[7] A. Jego. Thick points of random walk and the Gaussian free field , 2018, Electronic Journal of Probability.
[8] M. Biskup. Extrema of the Two-Dimensional Discrete Gaussian Free Field , 2017, Springer Proceedings in Mathematics & Statistics.
[9] Pierre-François Rodriguez. On pinned fields, interlacements, and random walk on (Z/NZ)2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\mathbb , 2017, Probability Theory and Related Fields.
[10] O. Zeitouni,et al. Barrier estimates for a critical Galton–Watson process and the cover time of the binary tree , 2017, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques.
[11] M. Biskup,et al. On intermediate level sets of two-dimensional discrete Gaussian free field , 2016, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques.
[12] M. Biskup,et al. Full extremal process, cluster law and freezing for the two-dimensional discrete Gaussian Free Field , 2016, 1606.00510.
[13] Y. Abe. Extremes of local times for simple random walks on symmetric trees , 2016, 1603.09047.
[14] F. Comets,et al. Two-Dimensional Random Interlacements and Late Points for Random Walks , 2015, 1502.03470.
[15] Y. Abe. Maximum and minimum of local times for two-dimensional random walk , 2014, 1410.5601.
[16] M. Biskup,et al. Conformal Symmetries in the Extremal Process of Two-Dimensional Discrete Gaussian Free Field , 2014, Communications in Mathematical Physics.
[17] Izumi Okada. Frequently visited sites of the inner boundary of simple random walk range , 2014, 1409.8368.
[18] Alex Zhai. Exponential concentration of cover times , 2014, 1407.7617.
[19] A. Shamov. On Gaussian multiplicative chaos , 2014, 1407.4418.
[20] Titus Lupu. From loop clusters and random interlacement to the free field , 2014, 1402.0298.
[21] P. Tarres,et al. Inverting Ray-Knight identity , 2013, Probability Theory and Related Fields.
[22] M. Biskup,et al. Extreme Local Extrema of Two-Dimensional Discrete Gaussian Free Field , 2013, 1306.2602.
[23] Pierre-François Rodriguez. Level set percolation for random interlacements and the Gaussian free field , 2013, 1302.7024.
[24] École d'été de probabilités de Saint-Flour,et al. Markov Paths, Loops and Fields: École d'Été de Probabilités de Saint-Flour XXXVIII – 2008 , 2011 .
[25] Jian Ding,et al. Asymptotics of cover times via Gaussian free fields: Bounded-degree graphs and general trees , 2011, 1103.4402.
[26] A. Sznitman. Random interlacements and the Gaussian free field , 2011, 1102.2077.
[27] Yuval Peres,et al. Cover times, blanket times, and majorizing measures , 2010, STOC '11.
[28] A. Teixeira. Interlacement percolation on transient weighted graphs , 2009, 0907.0316.
[29] Y. Jan. Markov paths, loops and fields , 2008, 0808.2303.
[30] Scott Sheffield,et al. Liouville quantum gravity and KPZ , 2008, 0808.1560.
[31] J. Rosen. A random walk proof of the Erdős-Taylor conjecture , 2005, Period. Math. Hung..
[32] G. Lawler,et al. The Brownian loop soup , 2003, math/0304419.
[33] A. Dembo,et al. Late points for random walks in two dimensions , 2003, math/0303102.
[34] A. Dembo,et al. Thick points for planar Brownian motion and the Erdős-Taylor conjecture on random walk , 2001 .
[35] H. Kaspi,et al. A Ray-Knight theorem for symmetric Markov processes , 2000 .
[36] E. B. Dynkin,et al. Markov processes as a tool in field theory , 1983 .
[37] J. Fröhlich,et al. The random walk representation of classical spin systems and correlation inequalities , 1982 .
[38] D. Ray. Sojourn times of diffusion processes , 1963 .
[39] P. Erdos,et al. Some problems concerning the structure of random walk paths , 1963 .
[40] D. Aldous. Threshold limits for cover times , 1991 .
[41] J. Kahane. Sur le chaos multiplicatif , 1985 .
[42] K. Symanzik. Euclidean Quantum field theory , 1969 .
[43] F. Knight,et al. Random walks and a sojourn density process of Brownian motion , 1963 .