Exceptional points of two-dimensional random walks at multiples of the cover time

[1]  Marek Biskup,et al.  A limit law for the most favorite point of simple random walk on a regular tree , 2021, 2111.09513.

[2]  M. Biskup,et al.  Exceptional points of discrete-time random walks in planar domains , 2019, Electronic Journal of Probability.

[3]  A. Jego Characterisation of Planar Brownian Multiplicative Chaos , 2019, Communications in Mathematical Physics.

[4]  A. Dembo,et al.  Limit law for the cover time of a random walk on a binary tree , 2019, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques.

[5]  A. Cortines,et al.  A Scaling Limit for the Cover Time of the Binary Tree , 2018, 1812.10101.

[6]  A. Jego Planar Brownian motion and Gaussian multiplicative chaos , 2018, The Annals of Probability.

[7]  A. Jego Thick points of random walk and the Gaussian free field , 2018, Electronic Journal of Probability.

[8]  M. Biskup Extrema of the Two-Dimensional Discrete Gaussian Free Field , 2017, Springer Proceedings in Mathematics & Statistics.

[9]  Pierre-François Rodriguez On pinned fields, interlacements, and random walk on (Z/NZ)2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\mathbb , 2017, Probability Theory and Related Fields.

[10]  O. Zeitouni,et al.  Barrier estimates for a critical Galton–Watson process and the cover time of the binary tree , 2017, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques.

[11]  M. Biskup,et al.  On intermediate level sets of two-dimensional discrete Gaussian free field , 2016, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques.

[12]  M. Biskup,et al.  Full extremal process, cluster law and freezing for the two-dimensional discrete Gaussian Free Field , 2016, 1606.00510.

[13]  Y. Abe Extremes of local times for simple random walks on symmetric trees , 2016, 1603.09047.

[14]  F. Comets,et al.  Two-Dimensional Random Interlacements and Late Points for Random Walks , 2015, 1502.03470.

[15]  Y. Abe Maximum and minimum of local times for two-dimensional random walk , 2014, 1410.5601.

[16]  M. Biskup,et al.  Conformal Symmetries in the Extremal Process of Two-Dimensional Discrete Gaussian Free Field , 2014, Communications in Mathematical Physics.

[17]  Izumi Okada Frequently visited sites of the inner boundary of simple random walk range , 2014, 1409.8368.

[18]  Alex Zhai Exponential concentration of cover times , 2014, 1407.7617.

[19]  A. Shamov On Gaussian multiplicative chaos , 2014, 1407.4418.

[20]  Titus Lupu From loop clusters and random interlacement to the free field , 2014, 1402.0298.

[21]  P. Tarres,et al.  Inverting Ray-Knight identity , 2013, Probability Theory and Related Fields.

[22]  M. Biskup,et al.  Extreme Local Extrema of Two-Dimensional Discrete Gaussian Free Field , 2013, 1306.2602.

[23]  Pierre-François Rodriguez Level set percolation for random interlacements and the Gaussian free field , 2013, 1302.7024.

[24]  École d'été de probabilités de Saint-Flour,et al.  Markov Paths, Loops and Fields: École d'Été de Probabilités de Saint-Flour XXXVIII – 2008 , 2011 .

[25]  Jian Ding,et al.  Asymptotics of cover times via Gaussian free fields: Bounded-degree graphs and general trees , 2011, 1103.4402.

[26]  A. Sznitman Random interlacements and the Gaussian free field , 2011, 1102.2077.

[27]  Yuval Peres,et al.  Cover times, blanket times, and majorizing measures , 2010, STOC '11.

[28]  A. Teixeira Interlacement percolation on transient weighted graphs , 2009, 0907.0316.

[29]  Y. Jan Markov paths, loops and fields , 2008, 0808.2303.

[30]  Scott Sheffield,et al.  Liouville quantum gravity and KPZ , 2008, 0808.1560.

[31]  J. Rosen A random walk proof of the Erdős-Taylor conjecture , 2005, Period. Math. Hung..

[32]  G. Lawler,et al.  The Brownian loop soup , 2003, math/0304419.

[33]  A. Dembo,et al.  Late points for random walks in two dimensions , 2003, math/0303102.

[34]  A. Dembo,et al.  Thick points for planar Brownian motion and the Erdős-Taylor conjecture on random walk , 2001 .

[35]  H. Kaspi,et al.  A Ray-Knight theorem for symmetric Markov processes , 2000 .

[36]  E. B. Dynkin,et al.  Markov processes as a tool in field theory , 1983 .

[37]  J. Fröhlich,et al.  The random walk representation of classical spin systems and correlation inequalities , 1982 .

[38]  D. Ray Sojourn times of diffusion processes , 1963 .

[39]  P. Erdos,et al.  Some problems concerning the structure of random walk paths , 1963 .

[40]  D. Aldous Threshold limits for cover times , 1991 .

[41]  J. Kahane Sur le chaos multiplicatif , 1985 .

[42]  K. Symanzik Euclidean Quantum field theory , 1969 .

[43]  F. Knight,et al.  Random walks and a sojourn density process of Brownian motion , 1963 .