Potential-field estimation using scalar and vector slepian functions at satellite altitude

In the last few decades, a series of increasingly sophisticated satellite missions has brought us gravity and magnetometry data of ever improving quality. To make optimal use of this rich source of information on the structure of the Earth and other celestial bodies, our computational algorithms should be well matched to the specific properties of the data. In particular, inversion methods require specialized adaptation if the data are only locally available, if their quality varies spatially, or if we are interested in model recovery only for a specific spatial region. Here, we present two approaches to estimate potential fields on a spherical Earth, from gradient data collected at satellite altitude. Our context is that of the estimation of the gravitational or magnetic potential from vector-valued measurements. Both of our approaches utilize spherical Slepian functions to produce an approximation of local data at satellite altitude, which is subsequently transformed to the Earth’s spherical reference surface. The first approach is designed for radialcomponent data only and uses scalar Slepian functions. The second approach uses all three components of the gradient data and incorporates a new type of vectorial spherical Slepian functions that we introduce in this chapter.

[1]  Peiliang Xu,et al.  The value of minimum norm estimation of geopotential fields , 1992 .

[2]  Robert L. Parker,et al.  Regularized geomagnetic field modelling using monopoles , 1994 .

[3]  Frederik J. Simons,et al.  Efficient analysis and representation of geophysical processes using localized spherical basis functions , 2009, Optical Engineering + Applications.

[4]  F. Simons,et al.  Spherical Slepian functions and the polar gap in geodesy , 2005, math/0603271.

[5]  Mioara Mandea,et al.  Revised spherical cap harmonic analysis (R‐SCHA): Validation and properties , 2006 .

[6]  F. Lowes,et al.  A discussion of the uniqueness of a Laplacian potential when given only partial field information on a sphere , 1995 .

[7]  Mioara Mandea,et al.  Wavelet frames: an alternative to spherical harmonic representation of potential fields , 2004 .

[8]  Willi Freeden,et al.  Spherical Functions of Mathematical Geosciences: A Scalar, Vectorial, and Tensorial Setup , 2008, Geosystems Mathematics.

[9]  J. Arkani‐Hamed An improved 50-degree spherical harmonic model of the magnetic field of Mars derived from both high-altitude and low-altitude data , 2002 .

[10]  Mark A. Wieczorek,et al.  Spatiospectral Concentration on a Sphere , 2004, SIAM Rev..

[11]  Catherine Constable,et al.  Foundations of geomagnetism , 1996 .

[12]  M. Eshagh Comparison of two approaches for considering laterally varying density in topographic effect on satellite gravity gradiometric data , 2010 .

[13]  Nils Olsen,et al.  Earth's lithospheric magnetic field determined to spherical harmonic degree 90 from CHAMP satellite measurements , 2006 .

[14]  Roel Snieder,et al.  Model Estimations Biased by Truncated Expansions: Possible Artifacts in Seismic Tomography , 1996, Science.

[15]  Nils Olsen,et al.  Mathematical Properties Relevant to Geomagnetic Field Modeling , 2010 .

[16]  R. Kennedy,et al.  Hilbert Space Methods in Signal Processing , 2013 .

[17]  E. Grafarend,et al.  Ellipsoidal spectral properties of the Earth’s gravitational potential and its first and second derivatives , 2005 .

[18]  J. Arkani‐Hamed,et al.  Band‐limited global scalar magnetic anomaly map of the Earth derived from Magsat data , 1986 .

[19]  Frederik J. Simons,et al.  Minimum-Variance Multitaper Spectral Estimation on the Sphere , 2007, 1306.3254.

[20]  F. Sansò,et al.  Band-limited functions on a bounded spherical domain: the Slepian problem on the sphere , 1999 .

[21]  J. Tromp,et al.  Theoretical Global Seismology , 1998 .

[22]  Stefan Maus,et al.  An ellipsoidal harmonic representation of Earth's lithospheric magnetic field to degree and order 720 , 2010 .

[23]  K. Lewis,et al.  Local spectral variability and the origin of the Martian crustal magnetic field , 2012 .

[24]  F. Lowes,et al.  Orthogonality of harmonic potentials and fields in spheroidal and ellipsoidal coordinates: application to geomagnetism and geodesy , 2012 .

[25]  Frederik J. Simons,et al.  Analysis of real vector fields on the sphere using Slepian functions , 2012, 2012 IEEE Statistical Signal Processing Workshop (SSP).

[26]  Cheinway Hwang,et al.  Fully normalized spherical cap harmonics: Application to the analysis of sea-level data from TOPEX/POSEIDON and ERS-1 , 1997 .

[27]  S. Maus,et al.  Simulation of the high-degree lithospheric field recovery for the Swarm constellation of satellites , 2006 .

[28]  F. Simons,et al.  Mapping Greenland’s mass loss in space and time , 2012, Proceedings of the National Academy of Sciences.

[29]  Peiliang Xu,et al.  Determination of surface gravity anomalies using gradiometric observables , 1992 .

[30]  Kathy Whaler,et al.  Spherical harmonic analysis of the geomagnetic field: an example of a linear inverse problem , 1981 .

[31]  Willi Freeden,et al.  Multiscale Potential Theory , 2004 .

[33]  Willi Freeden,et al.  Wavelet Modeling of Regional and Temporal Variations of the Earth’s Gravitational Potential Observed by GRACE , 2006 .

[34]  Hermann Lühr,et al.  Third generation of the Potsdam Magnetic Model of the Earth (POMME) , 2006 .

[35]  N. Bokor,et al.  Revisiting the Concentration Problem of Vector Fields within a Spherical Cap: A Commuting Differential Operator Solution , 2013, 1302.5261.

[36]  Monika Korte,et al.  Regularization of spherical cap harmonics , 2003 .

[37]  Reiner Rummel,et al.  Dynamic Ocean Topography - The Geodetic Approach , 2008 .

[38]  D. Slepian Some comments on Fourier analysis, uncertainty and modeling , 1983 .

[39]  Richard J. Blakely,et al.  The Magnetic Field of the Earth's Lithosphere: The Satellite Perspective , 1999 .

[40]  F. Simons,et al.  Spatiospectral concentration of vector fields on a sphere , 2013, 1306.3201.

[41]  Frederik J. Simons,et al.  GJI Geomagnetism, rock magnetism and palaeomagnetism Spectral and spatial decomposition of lithospheric magnetic field models using spherical Slepian functions , 2013 .

[42]  A. C. Davison,et al.  Statistical models: Name Index , 2003 .

[43]  J. Arkani‐Hamed A 50‐degree spherical harmonic model of the magnetic field of Mars , 2001 .

[44]  Nándor Bokor,et al.  Vector Slepian basis functions with optimal energy concentration in high numerical aperture focusing , 2012 .

[45]  Stéphane Mallat,et al.  A Wavelet Tour of Signal Processing - The Sparse Way, 3rd Edition , 2008 .

[46]  C. Mayer,et al.  Separating inner and outer Earth's magnetic field from CHAMP satellite measurements by means of vector scaling functions and wavelets , 2006 .

[47]  Cheinway Hwang Spectral analysis using orthonormal functions with a case study on the sea surface topography , 1993 .

[48]  Nils Olsen,et al.  Sources of the Geomagnetic Field and the Modern Data That Enable Their Investigation , 2014 .

[49]  G. V. Haines Spherical cap harmonic analysis , 1985 .

[50]  Mioara Mandea,et al.  Error distribution in regional modelling of the geomagnetic field , 2012 .

[51]  Jafar Arkani-Hamed,et al.  A coherent model of the crustal magnetic field of Mars , 2004 .

[52]  W. M. Kaula,et al.  Theory of statistical analysis of data distributed over a sphere , 1967 .

[53]  Peiliang Xu Truncated SVD methods for discrete linear ill-posed problems , 1998 .

[54]  Mioara Mandea,et al.  CHAOS-2—a geomagnetic field model derived from one decade of continuous satellite data , 2009 .

[55]  D. E. Winch,et al.  Modelling secondary microseismic noise by normal mode summation , 2013 .

[56]  D. Slepian,et al.  Prolate spheroidal wave functions, fourier analysis and uncertainty — II , 1961 .

[57]  Roland Klees,et al.  The spherical Slepian basis as a means to obtain spectral consistency between mean sea level and the geoid , 2012, Journal of Geodesy.

[58]  D. Slepian Prolate spheroidal wave functions, Fourier analysis and uncertainty — IV: Extensions to many dimensions; generalized prolate spheroidal functions , 1964 .

[59]  F. LeMoine,et al.  Resolving mass flux at high spatial and temporal resolution using GRACE intersatellite measurements , 2005 .

[60]  R. Blakely Potential theory in gravity and magnetic applications , 1996 .

[61]  Frederik J. Simons,et al.  A spatiospectral localization approach for analyzing and representing vector-valued functions on spherical surfaces , 2013, Optics & Photonics - Optical Engineering + Applications.

[62]  A. De Santis,et al.  Translated origin spherical cap harmonic analysis , 1991 .

[63]  M. Holschneider,et al.  Error distribution in regional inversion of potential field data , 2010 .