Chapter 10 Conjoint analysis with product-positioning applications

Publisher Summary This chapter provides the OR/MS researcher with an overview of conjoint's origins, foundations and progress, culminating in prescriptive models for optimal product-positioning. Its evolution has moved beyond initial preoccupation with utility measurement and buyer-choice simulations to interest in product design, market segmentation, and competitive strategy. OR/MS researchers are probably less knowledgeable with the more plebeian methodology of conjoint analysis, a multi attribute utility-measurement approach applied primarily by marketing researchers. Conjoint researchers are usually concerned with the more day-to-day decisions of consumers what brand of soap, automobile, phone service, photocopy machine to buy. While, in principle, conjoint methodology can be used to measure corporate administrators' multi attribute values, in most applications this is not the case.

[1]  Wayne S. DeSarbo,et al.  A simulated annealing methodology for clusterwise linear regression , 1989 .

[2]  Sönke Albers,et al.  An extended algorithm for optimal product positioning , 1979 .

[3]  Paul E. Green,et al.  Recent contributions to optimal product positioning and buyer segmentation , 1989 .

[4]  Paul E. Green,et al.  Nonmetric approaches to multivariate analysis in marketing , 1970 .

[5]  Jerrold H. May,et al.  Diffstrat: An analytical procedure for generating optimal new product concepts for a differentiated-type strategy , 1988 .

[6]  Ramesh Krishnamurti,et al.  Optimal product design using conjoint analysis: Computational complexity and algorithms , 1989 .

[7]  Yoram Wind,et al.  Subjective evaluation models and conjoint measurement , 1972 .

[8]  D. Krantz Conjoint measurement: The Luce-Tukey axiomatization and some extensions ☆ , 1964 .

[9]  Sönke Albers,et al.  A procedure for new product positioning in an attribute space , 1977 .

[10]  Ramesh Krishnamurti,et al.  A Heuristic Approach to Product Design , 1987 .

[11]  Richard M. Johnson Trade-Off Analysis of Consumer Values , 1974 .

[12]  Paul E. Green,et al.  Models and Heuristics for Product Line Selection , 1985 .

[13]  John R. Hauser,et al.  Assessment of Attribute Importances and Consumer Utility Functions: von Neumann-Morgenstern Theory Applied to Consumer Behavior , 1979 .

[14]  Peter H. Farquhar,et al.  Errata to “A Survey of Multiattribute Utility Theory and Applications” , 1978 .

[15]  R. Kohli,et al.  Heuristics for Product-Line Design Using Conjoint Analysis , 1990 .

[16]  Randall G. Chapaaan,et al.  Exploiting Rank Ordered Choice Set Data within the Stochastic Utility Model , 1982 .

[17]  Paul E. Green,et al.  A General Approach to Product Design Optimization via Conjoint Analysis , 1981 .

[18]  Paul E. Green,et al.  Hybrid Models for Conjoint Analysis: An Expository Review , 1984 .

[19]  W. Kamakura A Least Squares Procedure for Benefit Segmentation with Conjoint Experiments , 1988 .

[20]  J. Dyer Remarks on the analytic hierarchy process , 1990 .

[21]  R. Luce,et al.  Simultaneous conjoint measurement: A new type of fundamental measurement , 1964 .

[22]  Gregory Dobson,et al.  Positioning and Pricing a Product Line , 1988 .

[23]  P. Fishburn Methods of Estimating Additive Utilities , 1967 .

[24]  Michael R. Hagerty,et al.  Improving the Predictive Power of Conjoint Analysis: The use of Factor Analysis and Cluster Analysis , 1985 .

[25]  Paul E. Green,et al.  On the Robustness of Multidimensional Scaling Techniques , 1975 .

[26]  T. Saaty,et al.  The Analytic Hierarchy Process , 1985 .

[27]  N. Anderson Functional measurement and psychophysical judgment. , 1970, Psychological review.

[28]  Randall G. Chapman An Approach to Estimating Logit Models of a Single Decision Maker's Choice Behavior , 1984 .

[29]  P. Slovic,et al.  An analysis-of-variance model for the assessment of configural cue utilization in clinical judgment. , 1968, Psychological bulletin.

[30]  G. Huber,et al.  A study of self‐explicated utility models , 1970 .

[31]  G. Urban,et al.  You have printed the following article : Modeling Multiattribute Utility , Risk , and Belief Dynamics for New Consumer Durable Brand Choice , 2007 .

[32]  W. Edwards How to Use Multi-Attribute Utility Measurement for Social Decision Making , 1976 .

[33]  R. Dawes,et al.  Linear models in decision making. , 1974 .

[34]  Wayne S. DeSarbo,et al.  A Constrained Unfolding Methodology for Product Positioning , 1986 .

[35]  Kohsuke Ogawa,et al.  An Approach to Simultaneous Estimation and Segmentation in Conjoint Analysis , 1987 .

[36]  D. Wittink,et al.  Commercial Use of Conjoint Analysis: A Survey , 1982 .

[37]  Vithala R. Rao,et al.  Conjoint Measurement- for Quantifying Judgmental Data , 1971 .

[38]  Dan Horsky,et al.  An Approach to the Optimal Positioning of a New Product , 1983 .

[39]  V. Rao,et al.  GENFOLD2: A set of models and algorithms for the general UnFOLDing analysis of preference/dominance data , 1984 .

[40]  Vijay Mahajan,et al.  A Conjoint Model for Measuring Self- and Cross-Price/Demand Relationships , 1982 .

[41]  David W. Stanley,et al.  The Eclipse Method: Optimizing Product Formulation Through a Consumer Generated Ideal Sensory Profile , 1977 .

[42]  Jordan J. Louviere,et al.  Experimental choice analysis: Introduction and overview , 1991 .

[43]  Fred S. Zufryden,et al.  An Integer Programming Approach to the Optimal Product Line Selection Problem , 1988 .

[44]  Allan D. Shocker,et al.  Linear programming techniques for multidimensional analysis of preferences , 1973 .

[45]  Paul E. Green,et al.  Choice rules and sensitivity analysis in conjoint simulators , 1988 .

[46]  Jordan J. Louviere,et al.  Design and Analysis of Simulated Consumer Choice or Allocation Experiments: An Approach Based on Aggregate Data , 1983 .

[47]  Paul E. Green,et al.  On the Design of Choice Experiments Involving Multifactor Alternatives , 1974 .

[48]  Naresh K. Malhotra,et al.  A Comparison of the Predictive Validity of Procedures for Analyzing Binary Data , 1983 .

[49]  Allan D. Shocker,et al.  A Consumer-Based Methodology for the Identification of New Product Ideas , 1974 .

[50]  Richard T. Carson,et al.  Experimental analysis of choice , 1991 .

[51]  S. Addelman Orthogonal Main-Effect Plans for Asymmetrical Factorial Experiments , 1962 .

[52]  R. L. Keeney,et al.  Decisions with Multiple Objectives: Preferences and Value Trade-Offs , 1977, IEEE Transactions on Systems, Man, and Cybernetics.

[53]  J. Kruskal Analysis of Factorial Experiments by Estimating Monotone Transformations of the Data , 1965 .

[54]  Rajeev Kohli,et al.  Designing Products and Services for Consumer Welfare: Theoretical and Empirical Issues , 1990 .

[55]  Gregory W. Fischer,et al.  UTILITY MODELS FOR MULTIPLE OBJECTIVE DECISIONS: DO THEY ACCURATELY REPRESENT HUMAN PREFERENCES?* , 1979 .

[56]  Philippe Cattin,et al.  Commercial Use of Conjoint Analysis: An Update , 1989 .

[57]  Paul E. Green,et al.  Robustness of Conjoint Analysis: Some Monté Carlo Results , 1978 .

[58]  Amos Tversky,et al.  A general theory of polynomial conjoint measurement , 1967 .

[59]  P. Green,et al.  Conjoint Analysis in Consumer Research: Issues and Outlook , 1978 .

[60]  Paul E. Green,et al.  Multidimensional scaling and related techniques in marketing analysis , 1971 .

[61]  Imran S. Currim Predictive Testing of Consumer Choice Models Not Subject to Independence of Irrelevant Alternatives , 1982 .

[62]  Ching-Lai Hwang,et al.  Fuzzy Multiple Attribute Decision Making - Methods and Applications , 1992, Lecture Notes in Economics and Mathematical Systems.

[63]  Jerry Wind,et al.  Courtyard by Marriott: Designing a Hotel Facility with Consumer-Based Marketing Models , 1989 .

[64]  A. Charnes,et al.  A goal programming/constrained regression review of the Bell system breakup , 1988 .

[65]  Derek W. Bunn,et al.  Multiple Criteria Problem Solving , 1979 .

[66]  Wagner A. Kamakura,et al.  Predicting Choice Shares under Conditions of Brand Interdependence , 1984 .

[67]  P. Hoffman The paramorphic representation of clinical judgment. , 1960, Psychological bulletin.

[68]  Ajay K. Manrai,et al.  Optimal positioning of new product-concepts: some analytical implications and empirical results , 1992 .

[69]  Paul E. Green,et al.  Conjoint Analysis in Marketing: New Developments with Implications for Research and Practice , 1990 .

[70]  Jerrold H. May,et al.  A Simulation Comparison of Methods for New Product Location , 1983 .

[71]  Edgar A. Pessemier,et al.  Using Laboratory Brand Preference Scales to Predict Consumer Brand Purchases , 1971 .

[72]  D. McFadden The Choice Theory Approach to Market Research , 1986 .

[73]  P. Fishburn,et al.  Utility theory , 1980, Cognitive Choice Modeling.

[74]  A. Bachem,et al.  A product positioning model with costs and prices , 1981 .

[75]  Paul E. Green,et al.  Cross-Validation Assessment of Alternatives to Individual-Level Conjoint Analysis: A Case Study , 1989 .