Impact of Different Surface Ligands on the Optical Properties of PbS Quantum Dot Solids

The engineering of quantum dot solids with low defect concentrations and efficient carrier transport through a ligand strategy is crucial to achieve efficient quantum dot (QD) optoelectronic devices. Here, we study the consequences of various surface ligand treatments on the light emission properties of PbS quantum dot films using 1,3-benzenedithiol (1,3-BDT), 1,2-ethanedithiol (EDT), mercaptocarboxylic acids (MPA) and ammonium sulfide ((NH4)2S). We first investigate the influence of different ligand treatments on the inter-dot separation, which mainly determines the conductivity of the QD films. Then, through a combination of photoluminescence and transient photoluminescence characterization, we demonstrate that the radiative and non-radiative recombination mechanisms in the quantum dot films depend critically on the length and chemical structure of the surface ligands.

[1]  A. Q. Le Quang,et al.  Air-stable PbSe/PbS and PbSe/PbSexS1-x core-shell nanocrystal quantum dots and their applications. , 2006, The journal of physical chemistry. B.

[2]  Lukasz Brzozowski,et al.  Enhanced mobility-lifetime products in PbS colloidal quantum dot photovoltaics. , 2012, ACS nano.

[3]  D. Muller,et al.  Surfactant ligand removal and rational fabrication of inorganically connected quantum dots. , 2011, Nano letters.

[4]  Ratan Debnath,et al.  Depleted-heterojunction colloidal quantum dot solar cells. , 2010, ACS nano.

[5]  Lukasz Brzozowski,et al.  Quantum dot photovoltaics in the extreme quantum confinement regime: the surface-chemical origins of exceptional air- and light-stability. , 2010, ACS nano.

[6]  Bai Yang,et al.  Non-Injection and Low-Temperature Approach to Colloidal Photoluminescent PbS Nanocrystals with Narrow Bandwidth , 2009 .

[7]  F. V. Veggel,et al.  Highly Photoluminescent PbS Nanocrystals: The Beneficial Effect of Trioctylphosphine , 2008 .

[8]  Cherie R. Kagan,et al.  Designing high-performance PbS and PbSe nanocrystal electronic devices through stepwise, post-synthesis, colloidal atomic layer deposition. , 2014, Nano letters.

[9]  Xin Ma,et al.  Efficient exciton funneling in cascaded PbS quantum dot superstructures. , 2011, ACS nano.

[10]  Yadong Yin,et al.  Colloidal nanocrystal synthesis and the organic–inorganic interface , 2005, Nature.

[11]  Haiguang Zhao,et al.  Concentration-Dependent Photoinduced Photoluminescence Enhancement in Colloidal PbS Quantum Dot Solution , 2010 .

[12]  Frank W. Wise,et al.  Resonant Energy Transfer in PbS Quantum Dots , 2007 .

[13]  Haibo Ding,et al.  Colloidal silica beads modified with quantum dots and zinc (II) tetraphenylporphyrin for colorimetric sensing of ammonia , 2012, Microchimica Acta.

[14]  Alexey Y. Koposov,et al.  Effect of air exposure on surface properties, electronic structure, and carrier relaxation in PbSe nanocrystals. , 2010, ACS nano.

[15]  M. Bawendi,et al.  Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites , 1993 .

[16]  Matt Law,et al.  Schottky solar cells based on colloidal nanocrystal films. , 2008, Nano letters.

[17]  Marija Drndic,et al.  Coulomb blockade and hopping conduction in PbSe quantum dots. , 2005, Physical review letters.

[18]  Youngsang Kim,et al.  Benzenedithiol: a broad-range single-channel molecular conductor. , 2011, Nano letters.

[19]  A. Alivisatos,et al.  Photovoltaic Devices Employing Ternary PbSxSe1-x Nanocrystals , 2017 .

[20]  Banahalli R. Ratna,et al.  Structural and Morphological Characterization of PbS Nanocrystallites Synthesized in the Bicontinuous Cubic Phase of a Lipid , 1996 .

[21]  Matt Law,et al.  Structural, optical, and electrical properties of self-assembled films of PbSe nanocrystals treated with 1,2-ethanedithiol. , 2008, ACS nano.

[22]  Eminet Gebremichael,et al.  p-Type PbSe and PbS quantum dot solids prepared with short-chain acids and diacids. , 2010, ACS nano.

[23]  Dmitri V Talapin,et al.  PbSe Nanocrystal Solids for n- and p-Channel Thin Film Field-Effect Transistors , 2005, Science.

[24]  M. Kovalenko,et al.  Prospects of colloidal nanocrystals for electronic and optoelectronic applications. , 2010, Chemical reviews.

[25]  Aram Amassian,et al.  Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. , 2011, Nature materials.

[26]  Moungi G Bawendi,et al.  The dominant role of exciton quenching in PbS quantum-dot-based photovoltaic devices. , 2013, Nano letters.

[27]  Darrick J. Williams,et al.  Utilizing the lability of lead selenide to produce heterostructured nanocrystals with bright, stable infrared emission. , 2008, Journal of the American Chemical Society.

[28]  Gregory D. Scholes,et al.  Colloidal PbS Nanocrystals with Size‐Tunable Near‐Infrared Emission: Observation of Post‐Synthesis Self‐Narrowing of the Particle Size Distribution , 2003 .

[29]  Christopher B. Murray,et al.  Synthesis and Characterization of Monodisperse Nanocrystals and Close-Packed Nanocrystal Assemblies , 2000 .

[30]  Byung-Ryool Hyun,et al.  Photogenerated exciton dissociation in highly coupled lead salt nanocrystal assemblies. , 2010, Nano letters.

[31]  Xin Ma,et al.  High performance hybrid near-infrared LEDs using benzenedithiol cross-linked PbS colloidal nanocrystals , 2012 .

[32]  Xin Ma,et al.  Charge-transfer dynamics in multilayered PbS and PbSe quantum dot architectures , 2014 .

[33]  Galileo Sarasqueta,et al.  Effect of Solvent Treatment on Solution-Processed Colloidal PbSe Nanocrystal Infrared Photodetectors , 2010 .

[34]  I. Moreels,et al.  Size-dependent optical properties of colloidal PbS quantum dots. , 2009, ACS nano.

[35]  G. Konstantatos,et al.  Solution-processed PbS quantum dot infrared photodetectors and photovoltaics , 2005, Nature materials.