Maximum loadability of power systems using interior point nonlinear optimization method

This paper proposes a nonlinear optimization interior point (IP) method for the determination of maximum loadability in a power system. Details of the implementation of pure primal-dual and predictor-corrector primal-dual IP algorithms are presented. It is shown that most of the computational effort of the algorithm is taken by the formation and factorization of the augmented Hessian matrix of the IP algorithm. The size of this matrix can be as large as ten times the number of buses in the system. Comparisons of the two IP implementations with large scale power systems with as many as 4000 buses are presented. It is shown that the IP algorithm constitutes an effective method for the determination of the maximum loadability in a power system.