A novel silica trap for lead determination by hydride generation atomic absorption spectrometry

[1]  J. Venable,et al.  Signal enhancements produced from externally generated ‘carrier’ particles in electrothermal vaporization-inductively coupled plasma mass spectrometry , 2000 .

[2]  J. Tyson,et al.  Flow injection hydride generation electrothermal atomic absorption spectrometry with in-atomizer trapping for the determination of lead in calcium supplements. , 2000, Talanta.

[3]  Ş. Süzer,et al.  XPS Characterization of Bi and Mn Collected on Atom-Trapping Silica for AAS , 1999 .

[4]  Ş. Süzer,et al.  X-ray Photoelectron Spectroscopic Characterization of Au Collected with Atom Trapping on Silica for Atomic Absorption Spectrometry , 1997 .

[5]  W. Frech,et al.  Mechanism of formation and spatial distribution of lead atoms in quartz tube atomizers , 1997 .

[6]  J. Dědina,et al.  Hydride Generation Atomic Absorption Spectrometry , 1995 .

[7]  B. Welz,et al.  Investigations for the determination of tin by flow injection hydride generation atomic-absorption spectrometry. , 1992, Talanta.

[8]  T. Kantor Interpreting some analytical characteristics of thermal dispersion methods used for sample introduction in atomic spectrometry , 1988 .

[9]  W. D. Marshall,et al.  Performance of an automated gas chromatograph-silica furnace-atomic absorption spectrometer for the determination of alkyllead compounds , 1985 .

[10]  J. Castillo,et al.  Influence of oxidising agents in lead determination by hydride generation direct flame atomic absorption spectroscopy , 1985 .

[11]  B. Welz,et al.  Investigations on atomisation mechanisms of volatile hydride-forming elements in a heated quartz cell. Part 1. Gas-phase and surface effects; decomposition and atomisation of arsine , 1983 .