Spectral Transform and Solitons: How to Solve and Investigate Nonlinear Evolution Equations

The soliton was discovered (and named) in 1965 by Zabusky and Kruskal,(1) who were experimenting with the numerical solution by computer of the Korteweg-de Vries (KdV) equation. This nonlinear partial differential equation had been introduced at the end of the last century to describe wave motion in shallow canals.(2) Zabusky and Kruskal studied the equation because of its relevance to plasma physics, as well as to the Fermi-Pasta-Ulam puzzle(3) (for a fascinating account of the motivations that led to the “birth of the soliton,” see Kruskal.(4)) The first scientific description of the soliton as a natural phenomenon, however, goes back to the first half of the nineteenth century, and was reported by J. Scott-Russell in the following prose:(5) I was observing the motion of a boat which was rapidly drawn along a narrow channel by a pair of horses, when the boat suddenly stopped—not so the mass of water in the channel which it had put in motion; it accumulated round the prow of the vessel in a state of violent agitation, then suddenly leaving it behind, rolled forward with great velocity, assuming the form of a large solitary elevation, a rounded, smooth and well defined heap of water, which continued its course along the channel apparently without change of form or diminution of speed. I followed it on horseback, and overtook it still rolling on at a rate of some eight or nine miles an hour, preserving its original figure some thirty feet long and a foot to a foot and a half in height. Its height gradually diminished, and after a chase of one or two miles I lost it in the windings of the channel. Such, in the month of August 1834, was my first chance interview with that singular and beautiful phenomenon....

[1]  P. Kulish,et al.  Quadratic bundle and nonlinear equations , 1980 .

[2]  L. Faddeev,et al.  Essentially nonlinear one-dimensional model of classical field theory , 1974 .

[3]  Luther Pfahler Eisenhart,et al.  A Treatise on the Differential Geometry of Curves and Surfaces , 1961, The Mathematical Gazette.

[4]  Exact multi-soliton solution for nonlinear waves in a stratified fluid of finite depth , 1979 .

[5]  V. Zakharov,et al.  Korteweg-de Vries equation: A completely integrable Hamiltonian system , 1971 .

[6]  M. Kruskal,et al.  A two-parameter Miura transformation of the Benjamin-Ono equation , 1979 .

[7]  D. Maison On the complete integrability of the stationary, axially symmetric Einstein equations , 1979 .

[8]  C. S. Gardner,et al.  Korteweg‐de Vries Equation and Generalizations. III. Derivation of the Korteweg‐de Vries Equation and Burgers Equation , 1969 .

[9]  Mark Adler,et al.  On a trace functional for formal pseudo-differential operators and the symplectic structure of the Korteweg-devries type equations , 1978 .

[10]  F. Calogero,et al.  Rational solutions of the KdV equation with damping , 1979 .

[11]  Ljudmila A. Bordag,et al.  Two-dimensional solitons of the Kadomtsev-Petviashvili equation and their interaction , 1977 .

[12]  Luigi Bianchi,et al.  Lezioni di geometria differenziale , 1922 .

[13]  F. Calogero Generalized Wronskian relations, one-dimensional Schrödinger equation and nonlinear partial differential equations solvable by the inverse-scattering method , 1976 .

[14]  P. Caudrey,et al.  The inverse problem for the third order equation uxxx + q(x)ux + r(x)u = −iζ3u , 1980 .

[15]  A. Degasperis,et al.  Nonlinear Evolution Equations Solvable by the Inverse Spectral Transform Associated with the Matrix Schrödinger Equation , 1980 .

[16]  M. Boiti,et al.  Similarity solutions and Bäcklund transformations of the Boussinesq equation , 1980 .

[17]  David J. Kaup,et al.  On the Inverse Scattering Problem for Cubic Eigenvalue Problems of the Class ψxxx + 6Qψx + 6Rψ = λψ , 1980 .

[18]  A. Scott,et al.  The soliton: A new concept in applied science , 1973 .

[19]  Sergei Petrovich Novikov,et al.  NON-LINEAR EQUATIONS OF KORTEWEG-DE VRIES TYPE, FINITE-ZONE LINEAR OPERATORS, AND ABELIAN VARIETIES , 1976 .

[20]  L. D. Faddeev,et al.  Inverse problem of quantum scattering theory. II. , 1976 .

[21]  M. Atiyah,et al.  Construction of Instantons , 1978 .

[22]  V. Belinsky,et al.  Stationary Gravitational Solitons with Axial Symmetry , 1979 .

[23]  D. Levi,et al.  EVOLUTION-EQUATIONS ASSOCIATED WITH THE DISCRETE ANALOG OF THE MATRIX SCHRODINGER SPECTRAL PROBLEM SOLVABLE BY THE INVERSE SPECTRAL TRANSFORM , 1981 .

[24]  David W. McLaughlin,et al.  Introduction to discrete systems , 1978 .

[25]  R. Bullough,et al.  Solitons in Laser Physics , 1979 .

[26]  Morikazu Toda,et al.  Theory Of Nonlinear Lattices , 1981 .

[27]  V. Zakharov,et al.  Relativistically invariant two-dimensional models of field theory which are integrable by means of the inverse scattering problem method , 1978 .

[28]  T. Lewis Solitons in Action , 1979 .

[29]  S. Weinberg NONLINEAR REALIZATIONS OF CHIRAL SYMMETRY. , 1968 .

[30]  D. Levi,et al.  The discrete chiral-field hierarchy , 1982 .

[31]  R. Dodd,et al.  The Two Component Derivative Nonlinear Schrodinger Equation , 1979 .

[32]  D. Levi,et al.  Bäcklund transformations and nonlinear differential difference equations. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[33]  Vladimir E. Zakharov,et al.  On stochastization of one-dimensional chains of nonlinear oscillators , 1974 .

[34]  John D. Gibbon,et al.  Solitons in nonlinear optics. I. A more accurate description of the 2π pulse in self-induced transparency , 1973 .

[35]  Erik Taflin,et al.  Analytic Linearization, Hamiltonian Formalism, and Infinite Sequences of Constants of Motion for the Burgers Equation , 1981 .

[36]  D. Kaup The Estabrook-Wahlquist method with examples of application. , 1980 .

[37]  A. Degasperis,et al.  Extension of the spectral transform method for solving nonlinear evolution equations , 1978 .

[38]  M. Wadati,et al.  Bäcklund transformations for the Ernst equation , 1981 .

[39]  D. McLaughlin,et al.  Aspects of Soliton Physics , 1980 .

[40]  D. Levi,et al.  Extension of the spectral-transform method for solving nonlinear differential difference equations , 1978 .

[41]  Antonio Degasperis,et al.  Nonlinear evolution equations solvable by the inverse spectral transform.— II , 1977 .

[42]  O. Ragnisco Conservation laws for the whole class of nonlinear evolution equations associated to the matrix Schroedinger spectral problem , 1981 .

[43]  Decio Levi,et al.  Nonlinear differential difference equations as Backlund transformations , 1981 .

[44]  M. Hénon,et al.  Integrals of the Toda lattice , 1974 .

[45]  Yuji Kodama,et al.  Perturbations of solitons and solitary waves , 1981 .

[46]  Application of the inverse scattering method to the equation σxt=eσ , 1976 .

[47]  Solutions of the Higher Order Benjamin-Ono Equation , 1980 .

[48]  K. Case The N-soliton solution of the Benjamin-Ono equation. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[49]  Y Matsuno,et al.  Interaction of the Benjamin-Ono solitons , 1980 .

[50]  John D. Gibbon,et al.  AnN-soliton solution of a nonlinear optics equation derived by a general inverse method , 1973 .

[51]  Structure of tails produced under the action of perturbations on solitons , 1978 .

[52]  V. Zakharov,et al.  Exact Theory of Two-dimensional Self-focusing and One-dimensional Self-modulation of Waves in Nonlinear Media , 1970 .

[53]  R. Joseph Solitary waves in a finite depth fluid , 1977 .

[54]  A linear scattering problem for the finite depth equation , 1980 .

[55]  Alexey Borisovich Shabat,et al.  KLEIN-GORDON EQUATIONS WITH A NONTRIVIAL GROUP , 1979 .

[56]  L. Pilloni Extension of the spectral-transform method for solving nonlinear evolution equations and related conservation laws , 1980 .

[57]  Antonio Degasperis,et al.  Reduction technique for matrix nonlinear evolution equations solvable by the spectral transform , 1981 .

[58]  K. Case Benjamin-Ono-related equations and their solutions. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[59]  F. J. Ernst NEW FORMULATION OF THE AXIALLY SYMMETRIC GRAVITATIONAL FIELD PROBLEM. II. , 1968 .

[60]  A. Degasperis,et al.  Exact solution via the spectral transform of a nonlinear evolution equation with linearlyx-dependent coefficients , 1978 .

[61]  I. Gel'fand,et al.  The calculus of jets and nonlinear Hamiltonian systems , 1978 .

[62]  B. Seckler,et al.  The Inverse Problem in the Quantum Theory of Scattering... , 1964 .

[63]  R. S. Johnson,et al.  Correspondence between the classical λø4, double and single sine-gordon equations for three-dimensional solitons , 1978 .

[64]  C. Cosgrove Relationships between the group-theoretic and soliton-theoretic techniques for generating stationary axisymmetric gravitational solutions , 1980 .

[65]  Conserved quantities for generalized kdv equations , 1980 .

[66]  R. Bullough Solitons in Physics , 1978 .

[67]  Y. Yortsos,et al.  On the exactly solvable equation$S_t = [ ( \beta S + \gamma )^{ - 2} S_x ]_x + \alpha ( \beta S + \gamma )^{ - 2} S_x $ Occurring in Two-Phase Flow in Porous Media , 1982 .

[68]  S. Manakov,et al.  The nonabelian Toda lattice: Discrete analogue of the matrix Schrödinger spectral problem , 1980 .

[69]  Mark J. Ablowitz,et al.  Method for Solving the Sine-Gordon Equation , 1973 .

[70]  P. Santini Asymptotic behaviour (int) of solutions of the Boomeron equation , 1978 .

[71]  J. Cole On a quasi-linear parabolic equation occurring in aerodynamics , 1951 .

[72]  M. Bruschi,et al.  Extension of the Lax method to solve a class of nonlinear evolution equations with χ-dependent coefficients associated to the matrix Scrödinger spectral problem , 1980 .

[73]  I. Gel'fand,et al.  The resolvent and Hamiltonian systems , 1977 .

[74]  K. Case,et al.  Some remarks on the Wronskian technique and the inverse scattering transform , 1977 .

[75]  D. Korteweg,et al.  XLI. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves , 1895 .

[76]  Hiroaki Ono Algebraic Solitary Waves in Stratified Fluids , 1975 .

[77]  D. Levi,et al.  Discrete version of the modified Korteweg-De Vries equation withx-dependent coefficients , 1978 .

[78]  E. Hopf The partial differential equation ut + uux = μxx , 1950 .

[79]  G. Wilson,et al.  Conservation laws and symmetries of generalized sine-Gordon equations , 1981 .

[80]  Special solutions of coupled nonlinear evolution equations with bumps that behave as interacting particles , 1977 .

[81]  A. Osborne,et al.  Internal Solitons in the Andaman Sea , 1980, Science.

[82]  D. Levi The spectral transform NS a tool for solving nonlinear discrete evolution equations , 1979 .

[83]  D. Maison Are the stationary, axially symmetric Einstein equations completely integrable? , 1978 .

[84]  A. Mikhailov Integrability of the two-dimensional Thirring model , 1976 .

[85]  L. Takhtajan Integration of the Continuous Heisenberg Spin Chain Through the Inverse Scattering Method , 1977 .

[86]  F. Lund Solitons and Geometry , 1978 .

[87]  M. Ablowitz,et al.  On an internal wave equation describing a stratified fluid with finite depth , 1979 .

[88]  M. Bruschi,et al.  Existence of a Lax pair for any member of the class of nonlinear evolution equations associated to the matrix Schrödinger spectral problem , 1980 .

[89]  John W. Miles,et al.  The Korteweg-de Vries equation: a historical essay , 1981, Journal of Fluid Mechanics.

[90]  R. Johnson On the inverse scattering transform, the cylindrical Korteweg-De Vries equation and similarity solutions , 1979 .

[91]  T. Benjamin Internal waves of permanent form in fluids of great depth , 1967, Journal of Fluid Mechanics.

[92]  I. Gel'fand,et al.  Fractional powers of operators and Hamiltonian systems , 1976 .

[93]  A. Perelomov,et al.  Classical integrable finite-dimensional systems related to Lie algebras , 1981 .

[94]  A. Degasperis On the conservation laws associated with Lax equations , 1982 .

[95]  C. S. Gardner,et al.  Method for solving the Korteweg-deVries equation , 1967 .

[96]  Francesco Calogero,et al.  Solution of the One‐Dimensional N‐Body Problems with Quadratic and/or Inversely Quadratic Pair Potentials , 1971 .

[97]  Nonlinear evolution equations solvable by the inverse spectral transform associated with the multichannel Schrödinger problem, and properties of their solutions , 1976 .

[98]  P. Lax INTEGRALS OF NONLINEAR EQUATIONS OF EVOLUTION AND SOLITARY WAVES. , 1968 .

[99]  J. Satsuma,et al.  Periodic Wave and Rational Soliton Solutions of the Benjamin-Ono Equation , 1979 .

[100]  K. Case Properties of the Benjamin–Ono equation , 1979 .

[101]  Chauncey D. Leake,et al.  British Association for the Advancement of Science , 1953, Science.

[102]  I. Gel'fand,et al.  ASYMPTOTIC BEHAVIOUR OF THE RESOLVENT OF STURM-LIOUVILLE EQUATIONS AND THE ALGEBRA OF THE KORTEWEG-DE VRIES EQUATIONS , 1975 .

[103]  D. Kaup Method for Solving the Sine-Gordon Equation in Laboratory Coordinates† , 1975 .

[104]  D. J. Kaup,et al.  The Three-Wave Interaction-A Nondispersive Phenomenon , 1976 .

[105]  A. Degasperis,et al.  Exact solution via the spectral transform of a generalization with linearlyx-dependent coefficients of the modified Korteweg-de-Vires equation , 1978 .

[106]  A. Perelomov,et al.  The quantum Toda lattice , 1982 .

[107]  H. Flaschka On the Toda Lattice. II Inverse-Scattering Solution , 1974 .

[108]  S. Manakov,et al.  Asymptotic behavior of the solutions of the Kadomtsev-Pyatviashvili equation (two-dimensional Korteweg-De Vries equation) , 1980 .

[109]  Morikazu Toda,et al.  Studies of a non-linear lattice , 1975 .

[110]  A. Degasperis,et al.  Solution by the spectral-transform method of a nonlinear evolution equation including as a special case the cylindrical KdV equation , 1978 .

[111]  H. Flaschka The Toda lattice. II. Existence of integrals , 1974 .

[112]  M. Ablowitz,et al.  The Inverse scattering transform fourier analysis for nonlinear problems , 1974 .

[113]  V. Zakharov,et al.  Integration of the Einstein equations by means of the inverse scattering problem technique and construction of exact soliton solutions , 1978 .

[114]  M. Bruschi,et al.  Backlund transformations and Lax technique , 1980 .

[115]  D. Peregrine Calculations of the development of an undular bore , 1966, Journal of Fluid Mechanics.

[116]  R. Hirota Exact envelope‐soliton solutions of a nonlinear wave equation , 1973 .

[117]  Ryogo Hirota,et al.  Exact N‐soliton solutions of the wave equation of long waves in shallow‐water and in nonlinear lattices , 1973 .

[118]  B. Harrison Bäcklund Transformation for the Ernst Equation of General Relativity. , 1978 .

[119]  A. Degasperis Reduction technique for matrix nonlinear evolution equations , 1982 .

[120]  A. Newell,et al.  Integrable systems of nonlinear evolution equations , 1975 .

[121]  Vladimir E. Zakharov,et al.  A scheme for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering problem. I , 1974 .

[122]  M. Wadati,et al.  The Exact Solution of the Modified Korteweg-de Vries Equation , 1972 .

[123]  F. J. Ernst,et al.  A homogeneous Hilbert problem for the Kinnersley–Chitre transformations , 1980 .

[124]  B. Kadomtsev,et al.  On the Stability of Solitary Waves in Weakly Dispersing Media , 1970 .

[125]  G. Neugebauer Backlund transformations of axially symmetric stationary gravitational fields , 1979 .

[126]  R. Hirota Direct Methods in Soliton Theory (非線形現象の取扱いとその物理的課題に関する研究会報告) , 1976 .

[127]  Antonio Degasperis,et al.  Coupled nonlinear evolution equations solvable via the inverse spectral transform, and solitons that come back: the boomeron , 1976 .

[128]  A. Newell,et al.  Internal solitary waves near a turning point , 1980 .

[129]  Kimiaki Konno,et al.  New Integrable Nonlinear Evolution Equations , 1979 .

[130]  E. Kuznetsov,et al.  On the complete integrability of the two-dimensional classical Thirring model , 1977 .

[131]  K. Stewartson,et al.  On three-dimensional packets of surface waves , 1974, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[132]  David Robinson,et al.  Local Jet Bundle Formulation of Bäcklund Transformations , 1979 .

[133]  N. Zabusky,et al.  Interaction of "Solitons" in a Collisionless Plasma and the Recurrence of Initial States , 1965 .

[134]  On the evolution of two-dimensional packets of water waves over an uneven bottom , 1981 .

[135]  I. Gel'fand,et al.  Integrable nonlinear equations and the Liouville theorem , 1979 .

[136]  S. Ulam,et al.  Studies of nonlinear problems i , 1955 .

[137]  D. J. Kaup,et al.  Solitons as particles, oscillators, and in slowly changing media: a singular perturbation theory , 1978, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[138]  T. Regge,et al.  Unified Approach to Strings and Vortices with Soliton Solutions , 1976 .

[139]  M. Ablowitz Lectures on the Inverse Scattering Transform , 1978 .

[140]  A. Degasperis,et al.  Inverse spectral problem for the one-dimensional Schrödinger equation with an additional linear potential , 1978 .

[141]  M. Kruskal,et al.  A note on Miura’s transformation , 1979 .

[142]  P. Santini Asymptotic behaviour (int) of solutions of the cylindrical KdV equation. — I , 1979 .

[143]  Alan R. Bishop,et al.  Solitons and Condensed Matter Physics , 1978 .

[144]  V. Zakharov,et al.  Yang-Mills equations as inverse scattering problem , 1978 .

[145]  F. Calogero BÄcklund transformations and functional relation for solutions of nonlinear partial differential equations solvable via the inverse scattering method , 1975 .

[146]  Shun’ichi Tanaka Analogue of Fourier's Method for Korteweg-de Vries Equation , 1972 .

[147]  R. Hirota Exact solution of the Korteweg-deVries equation for multiple collision of solitons , 1971 .

[148]  Vladimir E. Zakharov,et al.  Resonant interaction of wave packets in nonlinear media , 1973 .

[149]  F. Calogero Solvable Many-Body Problems and Related Mathematical Findings (and Conjectures) , 1980 .

[150]  M. Lakshmanan,et al.  Continuum spin system as an exactly solvable dynamical system , 1977 .

[151]  F. Calogero A method to generate solvable nonlinear evolution equations , 1975 .

[152]  A. Degasperis,et al.  Exact solution via the spectral transform of a generalization with linearlyx-dependent coefficients of the nonlinear Schrödinger equation , 1978 .

[153]  G. Whitham,et al.  Linear and Nonlinear Waves , 1976 .

[154]  S. Orfanidis Models of nonlinear evolution equations , 1980 .

[155]  D. Kaup A method for solving the separable initial-value problem of the full three-dimensional three-wave interaction , 1980 .

[156]  D. Kaup Determining the final profiles from the initial profiles for the full three-dimensional three-wave resonant interaction , 1980 .

[157]  T. Skyrme,et al.  Particle states of a quantized meson field , 1961, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[158]  M. Wadati,et al.  A New Integrable Nonlinear Evolution Equation , 1980 .

[159]  Y. Manin Algebraic aspects of nonlinear differential equations , 1979 .

[160]  A. Perelomov,et al.  Two-dimensional generalized Toda lattice , 1981 .

[161]  D. Levi,et al.  Non-linear differential-difference equations with N-dependent coefficients. I , 1979 .

[162]  J. Moser,et al.  Three integrable Hamiltonian systems connected with isospectral deformations , 1975 .

[163]  C. Cercignani Solitons. Theory and application , 1977 .

[164]  Francesco Calogero,et al.  Nonlinear evolution equations solvable by the inverse spectral transform , 1978 .

[165]  J. Goldstone,et al.  Quantization of nonlinear waves , 1975 .

[166]  M. Toda On a Nonlinear Lattice (The Toda Lattice) , 1980 .

[167]  B. Harrison New large family of vacuum solutions of the equations of general relativity , 1980 .

[168]  On solutions of Liouville's equation , 1980 .

[169]  S. Maxon Cylindrical and spherical solitons , 1978 .

[170]  T. Taniuti,et al.  Perturbation Method for a Nonlinear Wave Modulation. II , 1969 .

[171]  C. S. Gardner,et al.  Korteweg-devries equation and generalizations. VI. methods for exact solution , 1974 .

[172]  M. Kruskal,et al.  Nonlinear wave equations , 1975 .

[173]  C. S. Gardner,et al.  The Korteweg-de Vries equation as a Hamiltonian System , 1971 .

[174]  Henry P. McKean,et al.  Hill’s Operator and Hyperelliptic Function Theory in the Presence of Infinitely Many Branch Points , 1976 .

[175]  D. Anker,et al.  On the soliton solutions of the Davey-Stewartson equation for long waves , 1978, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[176]  D. Levi,et al.  Discrete version of the nonlinear Schrödinger equation with linearlyx-dependent coefficients , 1979 .

[177]  F. Calogero Integrable Many-Body Problems , 1978 .

[178]  M. Adler Completely integrable systems and symplectic actions , 1979 .

[179]  S. Aubry A unified approach to the interpretation of displacive and order–disorder systems. II. Displacive systems , 1976 .

[180]  H. Gibbs,et al.  The Double Sine-Gordon Equations: A Physically Applicable System of Equations , 1980 .

[181]  V. G. Makhankov,et al.  Dynamics of classical solitons (in non-integrable systems) , 1978 .

[182]  Orlando Ragnisco,et al.  Extension of the Zakharov-Shabat generalized inverse method to solve differential-difference and difference-difference equations , 1980 .

[183]  Group-theoretical interpretation of the Korteweg-de Vries type equations , 1980 .

[184]  Y. Matsuno N-Soliton and N-Periodic Wave Solutions of the Higher Order Benjamin-Ono Equation , 1979 .

[185]  I. Gel'fand,et al.  Hamiltonian operators and algebraic structures related to them , 1979 .

[186]  K. Pohlmeyer,et al.  Integrable Hamiltonian systems and interactions through quadratic constraints , 1976 .

[187]  D. Chudnovsky One and multidimensional completely integrable systems arising from the isospectral deformation , 1980 .

[188]  F. Calogero Motion of poles and zeros of special solutions of nonlinear and linear partial differential equations and related «solvable» many-body problems , 1978 .

[189]  A. Degasperis,et al.  Group-theoretical approach to a class of lax equations including those solvable by the spectral transform , 1980 .

[190]  R. Miura The Korteweg–deVries Equation: A Survey of Results , 1976 .

[191]  M. Toda Vibration of a Chain with Nonlinear Interaction , 1967 .

[192]  D. Levi,et al.  Bäcklund transformation vs. the dressing method , 1982 .

[193]  T. Skyrme A non-linear theory of strong interactions , 1958, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[194]  Alan C. Newell,et al.  The Inverse Scattering Transform , 1980 .

[195]  Antonio Degasperis,et al.  Nonlinear evolution equations solvable by the inverse spectral transform.—I , 1976 .

[196]  M. Chaichian,et al.  On the method of inverse scattering problem and Bäcklund transformations for supersymmetric equations , 1978 .

[197]  Evolution equations associated to the triangular-matrix Schrödinger problem solvable by the inverse spectral transform , 1978 .

[198]  M. Bruschi,et al.  Nonlinear differential-difference equations, associated Backlund transformations and Lax technique , 1981 .

[199]  D. Levi,et al.  Bäcklund transformations for chiral field equations , 1982 .

[200]  A. Fordy,et al.  Integrable nonlinear Klein-Gordon equations and Toda lattices , 1980 .

[201]  F. Berezin Models of Gross-Neveu type are quantization of a classical mechanics with nonlinear phase space , 1978 .

[202]  Decio Levi,et al.  Integrable three-dimensional lattices , 1981 .

[203]  Y. Matsuno Exact multi-soliton solution of the Benjamin-Ono equation , 1979 .

[204]  W. Thirring A soluble relativistic field theory , 1958 .

[205]  K. Case Meromorphic solutions of the Benjamin-Ono equation , 1979 .

[206]  Robert M. Miura,et al.  Korteweg-de Vries Equation and Generalizations. I. A Remarkable Explicit Nonlinear Transformation , 1968 .

[207]  David J. Kaup,et al.  The Goursat and Cauchy Problems for the Sine-Gordon Equation , 1978 .

[208]  A. Bondeson,et al.  Space and Time Solution for Two Coupled Intensity Deviations from a Stationary Nonlinear State , 1979 .

[209]  M. Ablowitz Nonlinear Evolution Equations—Continuous and Discrete , 1977 .

[210]  F. Esposito,et al.  Theory and applications of the sine-gordon equation , 1971 .

[211]  Mark J. Ablowitz,et al.  Solitons and the Inverse Scattering Transform , 1981 .

[212]  S. Manakov,et al.  The inverse scattering transform for the time-dependent Schrodinger equation and Kadomtsev-Petviashvili equation , 1981 .

[213]  Propagation of ion acoustic waves in cold inhomogeneous plasmas , 1980 .

[214]  R. Joseph,et al.  Multi-soliton solutions in a finite depth fluid , 1978 .

[215]  Antonio Degasperis,et al.  Conservation laws for classes of nonlinear evolution equations solvable by the spectral transform , 1978 .

[216]  J. C. Eilbeck,et al.  Numerical evidence for breakdown of soliton behaviour in solutions of the Maxwell-Bloch equations , 1977 .

[217]  S. Manakov Complete integrability and stochastization of discrete dynamical systems , 1974 .

[218]  G. Soliani,et al.  Nonlinear Evolution Equations and Dynamical Systems , 1980 .

[219]  B. Hasslacher,et al.  Nonperturbative methods and extended-hadron models in field theory. II. Two-dimensional models and extended hadrons , 1974 .

[220]  H. H. Chen,et al.  Internal-Wave Solitons of Fluids with Finite Depth , 1979 .

[221]  P. Santini,et al.  Bäcklund transformations for nonlinear evolution equations in 2 + 1 dimensions , 1981 .

[222]  A. Nakamura Bäcklund Transform and Conservation Laws of the Benjamin-Ono Equation , 1979 .

[223]  C. S. Gardner,et al.  Korteweg‐de Vries Equation and Generalizations. II. Existence of Conservation Laws and Constants of Motion , 1968 .

[224]  H. H. Chen,et al.  Algebraic internal wave solitons and the integrable Calogero–Moser–Sutherland N‐body problem , 1979 .

[225]  S. Manakov,et al.  Three-dimensional model of relativistic-invariant field theory, integrable by the Inverse Scattering Transform , 1981 .

[226]  G. Lamb Elements of soliton theory , 1980 .

[227]  A. Ivanov Fixed points of mappings of metric spaces , 1979 .

[228]  D. Kaup The solution of the general initial value problem for the full three dimensional three-wave resonant interaction , 1981 .

[229]  A. Degasperis,et al.  Spectral transform and nonlinear evolution equations , 1978 .

[230]  A. Nakamura Exact N-Soliton Solution of the Modified Finite Depth Fluid Equation , 1979 .

[231]  R. Dodd,et al.  A two-connection and operator bundles for the Ernst equation for axially symmetric gravitational fields , 1979 .

[232]  J. Ladik,et al.  Generating exactly soluble nonlinear discrete evolution equations by a generalized Wronskian technique , 1977 .

[233]  David J. Kaup,et al.  An exact solution for a derivative nonlinear Schrödinger equation , 1978 .

[234]  James P. Keener,et al.  Solitons under perturbations , 1977 .

[235]  V. Zakharov,et al.  On the integrability of classical spinor models in two-dimensional space-time , 1980 .

[236]  A. Degasperis,et al.  Transformations between solutions of different nonlinear evolution equations solvable via the same inverse spectral transform, generalized resolvent formulae and nonlinear operator identities , 1976 .

[237]  A. Degasperis,et al.  Bäcklund transformations, nonlinear superposition principle, multisoliton solutions and conserved quantities for the « boomeron » nonlinear evolution equation , 1976 .

[238]  F. Kako,et al.  Complete Integrability of General Nonlinear Differential-Difference Equations Solvable by the Inverse Method. II , 1979 .

[239]  Y. Matsuno N-Soliton Solution of the Higher Order Wave Equation for a Fluid of Finite Depth , 1980 .

[240]  D. Kaup Applications of the inverse scattering transform II: the three-wave resonant interaction , 1978 .

[241]  H. McKean,et al.  The spectrum of Hill's equation , 1975 .

[242]  David Hilbert,et al.  Grundlagen der Geometrie , 2022 .

[243]  Robert M. Miura,et al.  Korteweg‐deVries Equation and Generalizations. V. Uniqueness and Nonexistence of Polynomial Conservation Laws , 1970 .

[244]  J. Bona,et al.  Model equations for long waves in nonlinear dispersive systems , 1972, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[245]  Sergei Petrovich Novikov,et al.  The periodic problem for the Korteweg—de vries equation , 1974 .

[246]  Vladimir E. Zakharov,et al.  The Inverse Scattering Method , 1980 .

[247]  L. Alonso Gel'fand-Dikii method and nonlinear equations associated to Schrödinger operators with energy-dependent potentials , 1980 .

[248]  H. Cornille Solutions of the nonlinear 3-wave equations in three spatial dimensions , 1979 .

[249]  Jürgen Moser,et al.  Dynamical Systems, Theory and Applications , 1975 .

[250]  Igor Krichever,et al.  METHODS OF ALGEBRAIC GEOMETRY IN THE THEORY OF NON-LINEAR EQUATIONS , 1977 .