On the Number of Connected Sets in Bounded Degree Graphs

A set of vertices in a graph is connected if the set induces a connected subgraph. Using Shearer’s entropy lemma, we show that the number of connected sets in an \(n\)-vertex graph with maximum vertex degree \(d\) is \(O(1.9351^n)\) for \(d=3\), \(O(1.9812^n)\) for \(d=4\), and \(O(1.9940^n)\) for \(d=5\). Dually, we construct infinite families of generalized ladder graphs whose number of connected sets is bounded from below by \(\varOmega (1.5537^n)\) for \(d=3\), \(\varOmega (1.6180^n)\) for \(d=4\), and \(\varOmega (1.7320^n)\) for \(d=5\).

[1]  Dieter Kratsch,et al.  On Independent Sets and Bicliques in Graphs , 2008, Algorithmica.

[2]  Andreas Björklund,et al.  Trimmed Moebius Inversion and Graphs of Bounded Degree , 2008, Theory of Computing Systems.

[3]  Jeff Kahn,et al.  An Entropy Approach to the Hard-Core Model on Bipartite Graphs , 2001, Combinatorics, Probability and Computing.

[4]  N. Alon Independent sets in regular graphs and sum-free subsets of finite groups , 1991 .

[5]  Jesper Makholm Byskov,et al.  On the number of maximal bipartite subgraphs of a graph , 2005 .

[6]  Fan Chung Graham,et al.  Some intersection theorems for ordered sets and graphs , 1986, J. Comb. Theory, Ser. A.

[7]  Béla Bollobás The Art of Mathematics - Coffee Time in Memphis , 2006 .

[8]  Fedor V. Fomin,et al.  Finding Induced Subgraphs via Minimal Triangulations , 2009, STACS.

[9]  J. Moon,et al.  On cliques in graphs , 1965 .

[10]  Andreas Björklund,et al.  The traveling salesman problem in bounded degree graphs , 2012, TALG.

[11]  Fedor V. Fomin,et al.  Treewidth computation and extremal combinatorics , 2012 .

[12]  Petr A. Golovach,et al.  Enumerating minimal connected dominating sets in graphs of bounded chordality , 2016, Theor. Comput. Sci..

[13]  Matthias Mnich,et al.  Feedback Vertex Sets in Tournaments , 2010, ESA.

[14]  Saket Saurabh,et al.  Maximum r-Regular Induced Subgraph Problem: Fast Exponential Algorithms and Combinatorial Bounds , 2012, SIAM J. Discret. Math..

[15]  Henning Fernau,et al.  Breaking the 2n-barrier for Irredundance: Two lines of attack , 2011, J. Discrete Algorithms.

[16]  Andreas Björklund,et al.  Computing the Tutte Polynomial in Vertex-Exponential Time , 2007, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[17]  Petr A. Golovach,et al.  Enumeration and Maximum Number of Minimal Connected Vertex Covers in Graphs , 2015, IWOCA.

[18]  Fabrizio Grandoni,et al.  Combinatorial bounds via measure and conquer: Bounding minimal dominating sets and applications , 2008, TALG.

[19]  Dieter Kratsch,et al.  On Independent Sets and Bicliques in Graphs , 2008, WG.

[20]  S. Miyano,et al.  Finding Optimal Bayesian Network Given a Super-Structure , 2008 .

[21]  Saket Saurabh,et al.  Improved Algorithms and Combinatorial Bounds for Independent Feedback Vertex Set , 2017, IPEC.

[22]  Fedor V. Fomin,et al.  On the Minimum Feedback Vertex Set Problem: Exact and Enumeration Algorithms , 2008, Algorithmica.

[23]  Henning Fernau,et al.  Exact and Parameterized Algorithms for Max Internal Spanning Tree , 2009, WG.

[24]  David Galvin An upper bound for the number of independent sets in regular graphs , 2009, Discret. Math..

[25]  Michal Pilipczuk,et al.  Finding a Maximum Induced Degenerate Subgraph Faster Than 2 n , 2012, IPEC.