暂无分享,去创建一个
[1] R. Suszko. Abolition of the fregean axiom , 1975 .
[2] Steffen Lewitzka,et al. Denotational Semantics for Modal Systems S3–S5 Extended by Axioms for Propositional Quantifiers and Identity , 2012, Stud Logica.
[3] Joanna Golinska-Pilarek,et al. Non-Fregean Propositional Logic with Quantifiers , 2016, Notre Dame J. Formal Log..
[4] Renate A. Schmidt,et al. Automated Synthesis of Tableau Calculi , 2011, Log. Methods Comput. Sci..
[5] Szymon Chlebowski. Sequent Calculi for SCI , 2018, Stud Logica.
[6] Steffen Lewitzka. $${\in_K}$$: a Non-Fregean Logic of Explicit Knowledge , 2011, Stud Logica.
[7] Dorota Leszczynska-Jasion,et al. An Investigation into Intuitionistic Logic with Identity , 2019 .
[8] Joanna Golinska-Pilarek. On the Minimal Non-Fregean Grzegorczyk Logic , 2016, Stud Logica.
[10] Roman Suszko,et al. Investigations into the sentential calculus with identity , 1972, Notre Dame J. Formal Log..
[11] Joanna Golinska-Pilarek,et al. Number of Extensions of Non-Fregean Logics , 2005, J. Philos. Log..
[12] Anita Wasilewska. A sequence formalization for SCI , 1976 .
[13] Joanna Golinska-Pilarek,et al. Tableau-based Decision Procedure for the Logic SCI , 2019, OVERLAY@AI*IA.
[14] R. Suszko,et al. Semantics for the sentential calculus with identity , 1971 .
[15] Ewa Orłowska,et al. Dual Tableaux: Foundations, Methodology, Case Studies , 2010 .
[16] Steffen Lewitzka. ∈I: An Intuitionistic Logic without Fregean Axiom and with Predicates for Truth and Falsity , 2009, Notre Dame J. Formal Log..
[18] Joanna Golińska-Pilarek,et al. Deduction in Non-Fregean Propositional Logic SCI , 2019, Axioms.
[19] Joanna Golinska-Pilarek,et al. Rasiowa-Sikorski proof system for the non-Fregean sentential logic SCI ★ , 2007, J. Appl. Non Class. Logics.