Snap-Shots of a Reduction Pathway: The Reaction of WCl6 with Copper Powder

A combined differential scanning calorimetry (DSC)/X-ray diffraction (XRD) methodology is used to search and identify compounds in the Cu/W/Cl system based on the successive reaction of WCl6 with copper powder. Thermal effects monitored by DSC are used to detect reaction pathways and phase formations of compounds. A series of five new and one already known compounds is discovered as crystalline phases in the Cu/W/Cl system and structurally characterized by XRD. The reaction of WCl6 with elemental copper begins at temperatures as low as 60 °C with the formation of crystalline powders of α-CuxWCl6. Continuing reaction stages include the successive formation of crystalline phases β-CuxWCl6, γ-CuxWCl6, α-Cu2W2Cl10, β-Cu2W2Cl10, and Cu2[W6Cl14].

[1]  S. Indris,et al.  From WCl6 to WCl2: Properties of Intermediate Fe-W-Cl Phases. , 2015, Inorganic chemistry.

[2]  M. Ströbele,et al.  Carbon Centered Trigonal Prismatic Tungsten Clusters [W6CCl18]n-(n= 1, 2) containing Copper(I) and Copper(II): Tungsten Clusters [W6CCl18]n-(n= 1, 2) with Copper(I) and (II) , 2015 .

[3]  M. Ströbele,et al.  Detection and Characterization of Compounds in the Mn‐W‐Cl System through a Combined Thermal Scanning ‐ XRD Approach , 2015 .

[4]  M. Ströbele,et al.  Thermal Detection, Synthesis, and Structural Characterization of Compounds in the Co–W–Cl System , 2014, Journal of Cluster Science.

[5]  M. Ströbele,et al.  Cluster harvesting by successive reduction of a metal halide with a nonconventional reduction agent: a benefit for the exploration of metal-rich halide systems. , 2013, Inorganic chemistry.

[6]  M. Ströbele,et al.  W4Br10 Cluster Intermediates in the Solid State Nucleation of W6Br12 , 2012 .

[7]  M. Ströbele,et al.  Low-temperature preparation of tungsten halide clusters: Crystal structure of the adduct W5Br12 · SbBr3 , 2012, Russian Journal of Coordination Chemistry.

[8]  M. Ströbele,et al.  Phosphorus‐Centered and Phosphinidene‐Capped Tungsten Chloride Clusters , 2011 .

[9]  M. Ströbele,et al.  New Tungsten Chloride Cluster Compounds Containing Iron or Cobalt: MW2Cl10 and MW6Cl14 (M = Fe, Co) , 2011 .

[10]  J. Ketelaar,et al.  Die Krystallstruktur des Wolframhexachlorids , 2010 .

[11]  M. Ströbele,et al.  The New Binary Tungsten Iodide W15I47 , 2010 .

[12]  C. Giacovazzo,et al.  EXPO2009: structure solution by powder data in direct and reciprocal space , 2009 .

[13]  M. Ströbele,et al.  Constitutional Isomerism of BiW6Cl15: (BiCl)[W6Cl14] and (BiCl2)[W6Cl13] , 2009 .

[14]  M. Weisser,et al.  From Cluster to Cluster: Structural Transformation Reactions Among Tungsten Chloride Clusters , 2009 .

[15]  S. Hull,et al.  Crystal structures and ionic conductivities of ternary derivatives of the silver and copper monohalides-II: ordered phases within the (AgX)x-(MX)1-x and (CuX)x-(MX)1-x (M = K, Rb and Cs; X = Cl, Br and I) systems , 2004 .

[16]  Jochen Glaser,et al.  Überschreitungen der konventionellen Zahl von Clusterelektronen in Metallhalogeniden des M6X12‐Typs: W6Cl18, (Me4N)2[W6Cl18] und Cs2[W6Cl18] , 2004 .

[17]  T. Roisnel,et al.  WinPLOTR: A Windows Tool for Powder Diffraction Pattern Analysis , 2001 .

[18]  Jochen Glaser,et al.  W6Cl18: Neue Synthesen, neue Strukturverfeinerung, elektronische Struktur und Magnetismus , 2001 .

[19]  R. Norrestam,et al.  High-Pressure Studies of Cs2CuCl4 and Cs2CoCl4 by X-Ray Diffraction Methods , 2000 .

[20]  Yueqing Zheng,et al.  Two Modifications of Copper(I) Octahedro-Hexatungsten(II) Tetradecabromide, Cu2[W6Br14] , 1998 .

[21]  V. Kolesnichenko,et al.  Facile Reduction of Tungsten Halides with Nonconventional, Mild Reductants. I. Tungsten Tetrachloride: Several Convenient Solid-State Syntheses, a Solution Synthesis of Highly Reactive (WCl4)x, and the Molecular Structure of Polymeric Tungsten Tetrachloride , 1998 .

[22]  J. Martínez,et al.  Thermochrome Chloro- und Bromocuprate: [C(NH2)3]2[CuBr4], (H3CC2N2SNH3)2[Cu2Br6], (C7N3H14)2[CuCl4], (C7N3H14)2[CuBr4], [(Cl, Br)C3N2H6][CuCl3OH2] und (BrC3N2H6)2[CuBr4] / Thermochromic Chloro- and Bromocuprates: [C(NH2)3]2[CuBr4], (H3CC2N2SNH3)2[Cu2Br6], (C7N3H14)2[CuCl4], (C7N3H14)2[CuBr4], [(Cl, , 1998 .

[23]  K. Peters,et al.  The crystal structure of tungsten(II) bromide, W6Br12 , 1997 .

[24]  J. Long,et al.  Comprehensive Tungsten-Iodine Cluster Chemistry: Isolated Intermediates in the Solid-State Nucleation of [W6I14]2- , 1995 .

[25]  H. Schnering,et al.  Synthese und Kristallstruktur der molekularen Clusterverbindung W6Br14 , 1994 .

[26]  S. Jagner,et al.  Crystal structure of tetramethylammonium catena-μ4-chloro-di-μ-chloro-dicuprate (I), [N(CH3)4] [Cu2Cl3] , 1986 .

[27]  G. Meyer Synproportionierung am metallischen Substrat: CsCu2Cl3 und CsCu2Br3 , 1984 .

[28]  H. Seifert,et al.  Strukturelle und magnetische Untersuchungen an Hexachlorowolframaten(V) , 1977 .

[29]  Peter Murray-Rust,et al.  A redetermination of the structure of tetramethylammonium tetrachlorocuprate(II) , 1975 .

[30]  J. C. Taylor,et al.  The structure of β-tungsten hexachloride by powder neutron and X-ray diffraction , 1974 .

[31]  H. Schnering,et al.  Die Kristallstruktur von W6Br16. Eine Verbindung mit Polykationen [W6Br8]6+ und Polyanionen [Br4]2− , 1968 .

[32]  H. Schäfer,et al.  Die Wolframbromide W6Br12, W6Br14, W6Br16 und W6Br18† , 1968 .

[33]  H. Schäfer,et al.  Nachweis der Moleküle W2Cl6 und W3Cl9 im Gaszustand , 1967 .

[34]  H. Schnering,et al.  Tungsten Trichloride [W6Cl12]Cl6 , 1967 .

[35]  J. Linde,et al.  The crystal structures of CsCu2Cl3 and CsAg2I3 , 1954 .