Field-induced canting of magnetic moments in GdCo5 at finite temperature: first-principles calculations and high-field measurements

We present calculations and experimental measurements of the temperature-dependent magnetization of a single crystal of GdCo5 in magnetic fields of order 60 T. At zero temperature the calculations, based on density-functional theory in the disordered-local-moment picture, predict a field-induced transition from an antiferromagnetic to a canted alignment of Gd and Co moments at 46.1 T. At higher temperatures the calculations find this critical field to increase along with the zero-field magnetization. The experimental measurements observe this transition to occur between 44-48 T at 1.4 K. Up to temperatures of at least 100 K, the experiments continue to observe the transition; however, at variance with the calculations, no strong temperature dependence of the critical field is apparent. We assign this difference to the inaccurate description of the zero-field magnetization of the calculations at low temperatures, due to the use of classical statistical mechanics. Correcting for this effect, we recover a consistent description of the high-field magnetization of GdCo5 from theory and experiment.

[1]  K. Buschow,et al.  Intersublattice exchange coupling in Gd-Co compounds studied by INS , 1994 .

[2]  Kaplesh Kumar,et al.  RETM5 and RE2TM17 permanent magnets development , 1988 .

[3]  P. Brommer,et al.  Magnetic properties of monocrystalline GdCo4B , 1996 .

[4]  Julie B. Staunton,et al.  A first-principles theory of ferromagnetic phase transitions in metals , 1985 .

[5]  Christina H. Chen,et al.  Magnetic Materials and Devices for the 21st Century: Stronger, Lighter, and More Energy Efficient , 2011, Advanced materials.

[6]  J. Wosnitza,et al.  High magnetic field study of the Gd-Co exchange interactions in GdCo12B6 , 2012 .

[7]  G. Hoffer,et al.  A Family of New Cobalt‐Base Permanent Magnet Materials , 1967 .

[8]  E. A. Nesbitt,et al.  Magnetic Moments of Intermetallic Compounds of Transition and Rare‐Earth Elements , 1962 .

[9]  O. Isnard,et al.  On the R 5d band polarization in rare-earth–transition metal compounds , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[10]  J. Liu,et al.  On the 4f-3d exchange interaction in intermetallic compounds , 1994 .

[11]  R. Radwanski,et al.  Chapter 5 Magnetic properties of binary rare-earth 3d-transition-metal intermetallic compounds , 1993 .

[12]  R. Radwanski Anisotropic ferrimagnets in high magnetic fields , 1986 .

[13]  Eric Jones,et al.  SciPy: Open Source Scientific Tools for Python , 2001 .

[14]  J. Lemaire,et al.  Anisotropic rare earth-cobalt exchange interactions in RCo5 intermetallics , 1987 .

[15]  J. Schlueter,et al.  Experimentally determining the exchange parameters of quasi-two-dimensional Heisenberg magnets , 2008 .

[16]  R. Elliott Magnetic properties of rare earth metals , 1972 .

[17]  A. Clark,et al.  Néel Ferrimagnets in Large Magnetic Fields , 1968 .

[18]  P. H. Quang,et al.  The Gd anisotropy in GdCo5 , 1992 .

[19]  B. L. Gyorffy,et al.  Temperature dependence of magnetic anisotropy: An ab initio approach , 2006 .

[20]  A. M. Tishin,et al.  Chapter Three Theory of Crystal-Field Effects in 3d-4f Intermetallic Compounds , 2007 .

[21]  M. Richter,et al.  Itinerant-electron magnetocrystalline anisotropy energy of YCo 5 and related compounds , 2001 .

[22]  C. Patrick,et al.  Rare-earth/transition-metal magnetic interactions in pristine and (Ni,Fe)-doped YCo5 and GdCo5 , 2017, 1708.00288.

[23]  Geetha Balakrishnan,et al.  Calculating the Magnetic Anisotropy of Rare-Earth-Transition-Metal Ferrimagnets. , 2018, Physical review letters.

[24]  R. Ballou,et al.  Anomalous thermal variation of the bulk anisotropy in GdCo5 , 1986 .