High speed all optical logic gates based on InAs/GaAs quantum-dot semiconductor optical amplifiers

A scheme to realize fiber-based all-optical Boolean logic functions including XOR, AND, OR and NOT based on a semiconductor optical amplifier with a closely stacked Stranski-Krastanow InAs/GaAs quantum dot layers is proposed. Rate equations is given to describe the population dynamics of the carrier in the device, as well as the nonlinear dynamics including carrier heating and spectral hole-burning. The model is used to simulated the cross gain and cross phase modulation in the device that are related to the logic processes. Results show with QD excited state serving as a carrier reservoir, this type of QD device is suitable for high speed operations with ultra fast carrier and phase relaxation. All optical logic operation can be carried out at up to 250 Gb/s.

[1]  G. Theophilopoulos,et al.  20 Gb/s all-optical XOR with UNI gate , 2000, IEEE Photonics Technology Letters.

[2]  T. W. Berg,et al.  Theory of pulse-train amplification without patterning effects in quantum-dot semiconductor optical amplifiers , 2004, IEEE Journal of Quantum Electronics.

[3]  Chun-Kit Chan,et al.  20-Gbit/s all-optical XOR gate by four-wave mixing in semiconductor optical amplifier with RZ-DPSK modulated inputs , 2004, Optical Fiber Communication Conference, 2004. OFC 2004.

[4]  Yasuhiko Arakawa,et al.  Quantum-Dot Semiconductor Optical Amplifiers , 2003, Proceedings of the IEEE.

[5]  O. Qasaimeh,et al.  Theory of four-wave mixing wavelength conversion in quantum dot semiconductor optical amplifiers , 2004, IEEE Photonics Technology Letters.

[6]  Mitsuru Sugawara,et al.  Quantum-dot semiconductor optical amplifiers , 2002, SPIE/OSA/IEEE Asia Communications and Photonics.

[7]  T. W. Berg,et al.  Ultrafast gain recovery and modulation limitations in self-assembled quantum-dot devices , 2001, IEEE Photonics Technology Letters.

[8]  T. W. Berg,et al.  Saturation and noise properties of quantum-dot optical amplifiers , 2004, IEEE Journal of Quantum Electronics.

[9]  D. Bimberg,et al.  Ultrafast gain dynamics in InAs-InGaAs quantum-dot amplifiers , 2000, IEEE Photonics Technology Letters.

[11]  Omar Qasaimeh,et al.  Linewidth enhancement factor of quantumdot lasers , 2005 .

[12]  D. Bimberg,et al.  Spectral hole-burning and carrier-heating dynamics in quantum-dot amplifiers: comparison with bulk amplifiers , 2001 .

[13]  Hiroshi Ishikawa,et al.  Lasing with low threshold current and high output power from columnar-shaped InAs/GaAs quantum dots , 1998 .

[14]  Johann Peter Reithmaier,et al.  Semiconductor optical amplifiers with nanostructured gain material , 2008 .

[15]  Y. Arakawa,et al.  Theory of optical signal amplification and processing by quantum-dot semiconductor optical amplifiers , 2004 .

[16]  H. Avramopoulos,et al.  10 Gbit/s all-optical Boolean XOR with SOA fibre Sagnac gate , 1999 .

[17]  Gilles Patriarche,et al.  Polarization dependence of electroluminescence from closely-stacked and columnar quantum dots , 2008 .

[18]  G. Agrawal Fiber‐Optic Communication Systems , 2021 .

[19]  B. Lembrikov,et al.  Ultrafast All-Optical Processor Based on Quantum-Dot Semiconductor Optical Amplifiers , 2009, IEEE Journal of Quantum Electronics.

[20]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[21]  N. Dutta,et al.  XOR performance of a quantum dot semiconductor optical amplifier based Mach-Zehnder interferometer. , 2005, Optics express.

[22]  Jesper Mørk,et al.  Quantum dot amplifiers with high output power and low noise , 2003 .

[23]  H. Ishikawa,et al.  Application of spectral-hole burning in the inhomogeneously broadened gain of self-assembled quantum dots to a multiwavelength-channel nonlinear optical device , 2000, IEEE Photonics Technology Letters.

[24]  D. Lenstra,et al.  All-optical logic gates using semiconductor optical amplifier assisted by optical filter , 2005 .

[25]  D. Bimberg,et al.  Spectral hole-burning and carrier-heating dynamics in InGaAs quantum-dot amplifiers , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[26]  J. Mørk,et al.  Saturation effects in nondegenerate four-wave mixing between short optical pulses in semiconductor laser amplifiers , 1997 .

[27]  Sang-Kook Han,et al.  10 Gbit/s all-optical composite logic gates with XOR, NOR, OR and NAND functions using SOA-MZI structures , 2006 .

[28]  J. M. Vázquez,et al.  Linewidth Enhancement Factor of Quantum-Dot Optical Amplifiers , 2006, IEEE Journal of Quantum Electronics.

[29]  J. Jaques,et al.  Study of all-optical XOR using Mach-Zehnder Interferometer and differential scheme , 2004, IEEE Journal of Quantum Electronics.

[30]  Haruhiko Kuwatsuka,et al.  Nonlinear processes responsible for nondegenerate four-wave mixing in quantum-dot optical amplifiers , 2000 .

[31]  Shun Lien Chuang,et al.  Small-Signal Cross-Gain Modulation of Quantum-Dot Semiconductor Optical Amplifiers , 2006, IEEE Photonics Technology Letters.