Simple and Efficient Greedy Algorithms for Hamilton Cycles in Random Intersection Graphs

In this work we consider the problem of finding Hamilton Cycles in graphs derived from the uniform random intersection graphs model Gn, m, p. In particular, (a) for the case m=nα, α>1 we give a result that allows us to apply (with the same probability of success) any algorithm that finds a Hamilton cycle with high probability in a Gn, k graph (i.e. a graph chosen equiprobably form the space of all graphs with k edges), (b) we give an expected polynomial time algorithm for the case p = constant and $m \leq \alpha {\sqrt{{n}\over {{\rm log}n}}}$ for some constant α, and (c) we show that the greedy approach still works well even in the case $m = o({{n}\over{{\rm log}n}})$ and p just above the connectivity threshold of Gn, m, p (found in [21]) by giving a greedy algorithm that finds a Hamilton cycle in those ranges of m, p with high probability.

[1]  Erhard Godehardt,et al.  Two Models of Random Intersection Graphs for Classification , 2003 .

[2]  Paul G. Spirakis,et al.  The Existence and Efficient Construction of Large Independent Sets in General Random Intersection Graphs , 2004, ICALP.

[3]  James Allen Fill,et al.  Random intersection graphs when m=omega(n): An equivalence theorem relating the evolution of the G(n, m, p) and G(n, p) models , 2000, Random Struct. Algorithms.

[4]  Russ Bubley,et al.  Randomized algorithms , 1995, CSUR.

[5]  Edward Szpilrajn-Marczewski Sur deux propriétés des classes d'ensembles , 1945 .

[6]  Maria J. Serna,et al.  A Random Graph Model for Optical Networks of Sensors , 2003, IEEE Trans. Mob. Comput..

[7]  José D. P. Rolim,et al.  Randomization and Approximation Techniques in Computer Science , 2002, Lecture Notes in Computer Science.

[8]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[9]  Paul G. Spirakis,et al.  Expander Properties in Random Regular Graphs with Edge Faults , 1995, STACS.

[10]  Edward R. Scheinerman,et al.  On Random Intersection Graphs: The Subgraph Problem , 1999, Combinatorics, Probability and Computing.

[11]  Maria J. Serna,et al.  Random Geometric Problems on [0, 1]² , 1998, RANDOM.

[12]  J. Dall,et al.  Random geometric graphs. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  René Beier,et al.  Random knapsack in expected polynomial time , 2003, STOC '03.

[14]  Josep Díaz Cort,et al.  Random geometric problems on $[0,1]^2$ , 1998 .

[15]  Saharon Shelah,et al.  Expected Computation Time for Hamiltonian Path Problem , 1987, SIAM J. Comput..

[16]  Paul G. Spirakis,et al.  On the Existence of Hamiltonian Cycles in Random Intersection Graphs , 2005, ICALP.

[17]  Amin Coja-Oghlan,et al.  Colouring Random Graphs in Expected Polynomial Time , 2003, STACS.

[18]  Maria J. Serna,et al.  Approximating Layout Problems on Random Geometric Graphs , 2001, J. Algorithms.

[19]  Andrew Thomason A simple linear expected time algorithm for finding a hamilton path , 1989, Discret. Math..

[20]  Robin Milner,et al.  On Observing Nondeterminism and Concurrency , 1980, ICALP.

[21]  James Allen Fill,et al.  Random intersection graphs when m= w (n): an equivalence theorem relating the evolution of the G ( n, m, p ) and G ( n,P /italic>) models , 2000 .

[22]  Paul G. Spirakis,et al.  Short Vertex Disjoint Paths and Multiconnectivity in Random Graphs: Reliable Network Computing , 1994, ICALP.

[23]  Noga Alon,et al.  The Probabilistic Method, Second Edition , 2004 .

[24]  B. Bollobás,et al.  An algorithm for finding hamilton paths and cycles in random graphs , 1987 .

[25]  Béla Bollobás,et al.  Random Graphs: Notation , 2001 .

[26]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.