AN INVITATION TO NONLOCAL MODELING, ANALYSIS AND COMPUTATION

This lecture serves as an invitation to further studies on nonlocal models, their mathematics, computation, and applications. We sample our recent attempts in the development of a systematic mathematical framework for nonlocal models, including basic elements of nonlocal vector calculus, well-posedness of nonlocal variational problems, coupling to local models, convergence and compatibility of numerical approximations, and applications to nonlocal mechanics and diffusion. We also draw connections with traditional models and other relevant mathematical subjects.

[1]  M A Fuentes,et al.  Nonlocal interaction effects on pattern formation in population dynamics. , 2003, Physical review letters.

[2]  N. SIAMJ.,et al.  ANALYSIS AND COMPARISON OF DIFFERENT APPROXIMATIONS TO NONLOCAL DIFFUSION AND LINEAR PERIDYNAMIC EQUATIONS∗ , 2013 .

[3]  Douglas N. Arnold,et al.  Locking-free finite element methods for shells , 1997, Math. Comput..

[4]  Qiang Du,et al.  A discontinuous Galerkin method for one-dimensional time-dependent nonlocal diffusion problems , 2017, Math. Comput..

[5]  Qiang Du,et al.  Robust a posteriori stress analysis for quadrature collocation approximations of nonlocal models via nonlocal gradients , 2016 .

[6]  Xingjie Helen Li,et al.  Quasi-nonlocal Coupling of Nonlocal Diffusions , 2017, SIAM J. Numer. Anal..

[7]  X. Chen,et al.  Continuous and discontinuous finite element methods for a peridynamics model of mechanics , 2011 .

[8]  Sébastien Motsch,et al.  Heterophilious Dynamics Enhances Consensus , 2013, SIAM Rev..

[9]  Eitan Tadmor,et al.  Eulerian dynamics with a commutator forcing , 2016, 1612.04297.

[10]  J. Monaghan Smoothed particle hydrodynamics , 2005 .

[11]  Qiang Du,et al.  On the variational limit of a class of nonlocal functionals related to peridynamics , 2015 .

[12]  Ted Belytschko,et al.  A meshfree unification: reproducing kernel peridynamics , 2014, Computational Mechanics.

[13]  J. Klafter,et al.  The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics , 2004 .

[14]  Alexandre J. Chorin,et al.  Optimal prediction with memory , 2002 .

[15]  D. Spielman Algorithms, Graph Theory, and Linear Equations in Laplacian Matrices , 2011 .

[16]  Matti Lassas,et al.  Reconstruction and Interpolation of Manifolds. I: The Geometric Whitney Problem , 2015, Foundations of Computational Mathematics.

[17]  Stanley Osher,et al.  Image Recovery via Nonlocal Operators , 2010, J. Sci. Comput..

[18]  Q. Du,et al.  MATHEMATICAL ANALYSIS FOR THE PERIDYNAMIC NONLOCAL CONTINUUM THEORY , 2011 .

[19]  Qiang Du,et al.  Trace Theorems for some Nonlocal Function Spaces with Heterogeneous Localization , 2017, SIAM J. Math. Anal..

[20]  Bruno Lévy,et al.  Laplace-Beltrami Eigenfunctions Towards an Algorithm That "Understands" Geometry , 2006, IEEE International Conference on Shape Modeling and Applications 2006 (SMI'06).

[21]  Jean-Michel Morel,et al.  A Review of Image Denoising Algorithms, with a New One , 2005, Multiscale Model. Simul..

[22]  Enrico Valdinoci,et al.  Is a nonlocal diffusion strategy convenient for biological populations in competition? , 2017, Journal of mathematical biology.

[23]  Stewart Andrew Silling,et al.  Linearized Theory of Peridynamic States , 2010 .

[24]  Q. Du,et al.  Characterization of function spaces of vector fields and an application in nonlinear peridynamics , 2016 .

[25]  Qiang Du,et al.  A Peridynamic Model of Fracture Mechanics with Bond-Breaking , 2018 .

[26]  Qiang Du,et al.  Asymptotically compatible schemes for the approximation of fractional Laplacian and related nonlocal diffusion problems on bounded domains , 2016, Adv. Comput. Math..

[27]  Hong Wang,et al.  A fast Galerkin method with efficient matrix assembly and storage for a peridynamic model , 2012, J. Comput. Phys..

[28]  Christian Willberg,et al.  Peridigm Users Guide , 2018 .

[29]  Michael J Saxton,et al.  Wanted: a positive control for anomalous subdiffusion. , 2012, Biophysical journal.

[30]  Qiang Du,et al.  Nonlocal diffusion and peridynamic models with Neumann type constraints and their numerical approximations , 2017, Appl. Math. Comput..

[31]  Guy Gilboa,et al.  Nonlocal Operators with Applications to Image Processing , 2008, Multiscale Model. Simul..

[32]  E. Valdinoci,et al.  Nonlocal Diffusion and Applications , 2015, 1504.08292.

[33]  Juan Luis V'azquez,et al.  The Mathematical Theories of Diffusion: Nonlinear and Fractional Diffusion , 2017, 1706.08241.

[34]  S. Silling,et al.  Peridynamic States and Constitutive Modeling , 2007 .

[35]  R. Metzler,et al.  Anomalous diffusion of phospholipids and cholesterols in a lipid bilayer and its origins. , 2012, Physical review letters.

[36]  Ricardo H. Nochetto,et al.  Discrete ABP Estimate and Convergence Rates for Linear Elliptic Equations in Non-divergence Form , 2014, Found. Comput. Math..

[37]  Qiang Du,et al.  Local Limits and Asymptotically Compatible Discretizations , 2016 .

[38]  Vlad Vicol,et al.  Nonlinear maximum principles for dissipative linear nonlocal operators and applications , 2011, 1110.0179.

[39]  Qiang Du,et al.  Analysis of a nonlocal-in-time parabolic equation , 2016 .

[40]  Qiang Du,et al.  The bond-based peridynamic system with Dirichlet-type volume constraint , 2014, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[41]  Qiang Du,et al.  A conservative nonlocal convection–diffusion model and asymptotically compatible finite difference discretization , 2017 .

[42]  Xiaochuan Tian Nonlocal models with a finite range of nonlocal interactions , 2017 .

[43]  DU Qiang,et al.  Numerical Solution of a Scalar One-Dimensional Monotonicity-Preserving Nonlocal Nonlinear Conservation Law , 2017 .

[44]  John M. Ball,et al.  Progress and puzzles in nonlinear elasticity , 2010 .

[45]  Bo Ren,et al.  A 3D discontinuous Galerkin finite element method with the bond-based peridynamics model for dynamic brittle failure analysis , 2017 .

[46]  J. Bourgain,et al.  Another look at Sobolev spaces , 2001 .

[47]  Ralf Metzler,et al.  Physical pictures of transport in heterogeneous media: Advection‐dispersion, random‐walk, and fractional derivative formulations , 2002, cond-mat/0202327.

[48]  Dejan Slepcev,et al.  A variational approach to the consistency of spectral clustering , 2015, Applied and Computational Harmonic Analysis.

[49]  Jörg Schröder,et al.  Poly-, quasi- and rank-one convexity in applied mechanics , 2010 .

[50]  Qiang Du,et al.  Mathematical Models and Methods in Applied Sciences c ○ World Scientific Publishing Company Sandia National Labs SAND 2010-8353J A NONLOCAL VECTOR CALCULUS, NONLOCAL VOLUME-CONSTRAINED PROBLEMS, AND NONLOCAL BALANCE LAWS , 2022 .

[51]  Qiang Du,et al.  Nonlocal convection-diffusionvolume-constrained problems and jump processes , 2014 .

[52]  Philippe H. Geubelle,et al.  Nonlocal Calculus of Variations and Well-Posedness of Peridynamics from : Handbook of Peridynamic Modeling , 2018 .

[53]  Laurent Bartholdi,et al.  Hodge Theory on Metric Spaces , 2009, Found. Comput. Math..

[54]  Stéphane Lafon,et al.  Diffusion maps , 2006 .

[55]  Qiang Du,et al.  Asymptotically Compatible Schemes and Applications to Robust Discretization of Nonlocal Models , 2014, SIAM J. Numer. Anal..

[56]  Patrick Ciarlet,et al.  On traces for functional spaces related to Maxwell's equations Part I: An integration by parts formula in Lipschitz polyhedra , 2001 .

[57]  Thinh Duc Le,et al.  NONLOCAL EXTERIOR CALCULUS ON RIEMANNIAN MANIFOLDS , 2012 .

[58]  Jiang Yang,et al.  Fast and accurate implementation of Fourier spectral approximations of nonlocal diffusion operators and its applications , 2017, J. Comput. Phys..

[59]  J. Monaghan,et al.  Smoothed particle hydrodynamics: Theory and application to non-spherical stars , 1977 .

[60]  Scott A. McKinley,et al.  Transient anomalous diffusion of tracer particles in soft matter , 2009 .

[61]  Tadele Mengesha,et al.  NONLOCAL KORN-TYPE CHARACTERIZATION OF SOBOLEV VECTOR FIELDS , 2012 .

[62]  B. Ackerson,et al.  Dynamic heterogeneity and non-Gaussian statistics for acetylcholine receptors on live cell membrane , 2016, Nature Communications.

[63]  Augusto C. Ponce,et al.  An estimate in the spirit of Poincaré's inequality , 2004 .

[64]  Lili Ju,et al.  Nodal-type collocation methods for hypersingular integral equations and nonlocal diffusion problems , 2016 .

[65]  L. Ambrosio,et al.  Gamma-convergence of nonlocal perimeter functionals , 2010, 1007.3770.

[66]  Sergei Ivanov,et al.  A graph discretization of the Laplace-Beltrami operator , 2013, 1301.2222.

[67]  Luis Silvestre,et al.  Regularity estimates for parabolic integro-differential equations and applications , 2014 .

[68]  J. Morel,et al.  On image denoising methods , 2004 .

[69]  A. Bertozzi,et al.  Γ-CONVERGENCE OF GRAPH GINZBURG–LANDAU FUNCTIONALS , 2012 .

[70]  Qiang Du,et al.  Robust Discretization of Nonlocal Models Related to Peridynamics , 2015 .

[71]  Hong Wang,et al.  AN EFFICIENT COLLOCATION METHOD FOR A NON-LOCAL DIFFUSION MODEL , 2013 .

[72]  S. Silling Reformulation of Elasticity Theory for Discontinuities and Long-Range Forces , 2000 .

[73]  Shi Jin,et al.  Efficient Asymptotic-Preserving (AP) Schemes For Some Multiscale Kinetic Equations , 1999, SIAM J. Sci. Comput..

[74]  Amit Singer,et al.  Spectral Convergence of the connection Laplacian from random samples , 2013, 1306.1587.

[75]  Mikhail Belkin,et al.  Towards a Theoretical Foundation for Laplacian-Based Manifold Methods , 2005, COLT.

[76]  Li Tian,et al.  A Convergent Adaptive Finite Element Algorithm for Nonlocal Diffusion and Peridynamic Models , 2013, SIAM J. Numer. Anal..

[77]  Qiang Du,et al.  Stability of Nonlocal Dirichlet Integrals and Implications for Peridynamic Correspondence Material Modeling , 2018, SIAM J. Appl. Math..

[78]  Igor M. Sokolov,et al.  Models of anomalous diffusion in crowded environments , 2012 .

[79]  Jean-Luc Guermond,et al.  Asymptotic Analysis of Upwind Discontinuous Galerkin Approximation of the Radiative Transport Equation in the Diffusive Limit , 2010, SIAM J. Numer. Anal..

[80]  Yuan Lou,et al.  Random dispersal vs. non-local dispersal , 2009 .

[81]  Qiang Du,et al.  Mathematics of Smoothed Particle Hydrodynamics, Part I: a Nonlocal Stokes Equation , 2018, 1805.08261.

[82]  Qiang Du,et al.  Nonconforming Discontinuous Galerkin Methods for Nonlocal Variational Problems , 2015, SIAM J. Numer. Anal..

[83]  Eli Barkai,et al.  Paradoxes of subdiffusive infiltration in disordered systems. , 2010, Physical review letters.

[84]  Sandia Report,et al.  Peridynamics with LAMMPS: A User Guide v0.3 Beta , 2010 .

[85]  Philippe H. Geubelle,et al.  Handbook of Peridynamic Modeling , 2017 .

[86]  R. Lehoucq,et al.  Peridynamic Theory of Solid Mechanics , 2010 .

[87]  Qiang Du,et al.  Nonlocal conservation laws. I. A new class of monotonicity-preserving models , 2016, 1611.08726.

[88]  Kun Zhou,et al.  Analysis and Approximation of Nonlocal Diffusion Problems with Volume Constraints , 2012, SIAM Rev..

[89]  Patrick Ciarlet,et al.  On traces for functional spaces related to Maxwell's equations Part II: Hodge decompositions on the boundary of Lipschitz polyhedra and applications , 2001 .

[90]  Unione matematica italiana Lecture notes of the Unione matematica italiana , 2006 .

[91]  Qiang Du,et al.  On the consistency between nearest-neighbor peridynamic discretizations and discretized classical elasticity models , 2016 .

[92]  Bruce J. West Fractional Calculus View of Complexity: Tomorrow’s Science , 2015 .

[93]  Takashi Kumagai,et al.  Anomalous random walks and di ↵ usions : From fractals to random media , 2014 .

[94]  Ricardo H. Nochetto,et al.  A PDE Approach to Space-Time Fractional Parabolic Problems , 2014, SIAM J. Numer. Anal..

[95]  Jiang Yang,et al.  Asymptotically Compatible Fourier Spectral Approximations of Nonlocal Allen-Cahn Equations , 2016, SIAM J. Numer. Anal..

[96]  Qiang Du,et al.  From peridynamics to stochastic jump process: Illustrations of nonlocal balance laws and nonlocal calculus framework , 2015 .

[97]  Eitan Tadmor,et al.  Eulerian dynamics with a commutator forcing III. Fractional diffusion of order 0 , 2017, Physica D: Nonlinear Phenomena.

[98]  Lili Ju,et al.  Quadrature rules for finite element approximations of 1D nonlocal problems , 2016, J. Comput. Phys..

[99]  Alexis Vasseur,et al.  A Parabolic Problem with a Fractional Time Derivative , 2015, 1501.07211.

[100]  Qiang Du,et al.  Nonlocal Models with Heterogeneous Localization and Their Application to Seamless Local-Nonlocal Coupling , 2019, Multiscale Model. Simul..

[101]  L. Caffarelli,et al.  An Extension Problem Related to the Fractional Laplacian , 2006, math/0608640.

[102]  S. Silling,et al.  Convergence, adaptive refinement, and scaling in 1D peridynamics , 2009 .