An object-oriented framework for modular chemical process simulation with semiconductor processing applications

[1]  Wilson Rivera,et al.  An Object Oriented Framework for Computational Fluid Dynamics Simulations , 2006 .

[2]  Xiang Li,et al.  Module-oriented automatic differentiation in chemical process systems optimization , 2004, Comput. Chem. Eng..

[3]  Jose Leboreiro,et al.  Processes synthesis and design of distillation sequences using modular simulators: a genetic algorithm framework , 2004, Comput. Chem. Eng..

[4]  Richard D. Braatz,et al.  Perspectives on the design and control of multiscale systems , 2004 .

[5]  G. Rubloff,et al.  In situ mass spectrometry in a 10 Torr W chemical vapor deposition process for film thickness metrology and real-time advanced process control , 2004 .

[6]  E. Kaxiras,et al.  An Overview of Multiscale Simulations of Materials , 2004, cond-mat/0401073.

[7]  R. Adomaitis A reduced-basis discretization method for chemical vapor deposition reactor simulation , 2003 .

[8]  Dionisios G. Vlachos,et al.  Recent developments on multiscale, hierarchical modeling of chemical reactors , 2002 .

[9]  R. Adomaitis Objects for MWR , 2002 .

[10]  H. T. Banks,et al.  Reduced Order Modeling and Control of Thin Film Growth in an HPCVD Reactor , 2002, SIAM J. Appl. Math..

[11]  Christopher A. Bode,et al.  Run-to-run control and performance monitoring of overlay in semiconductor manufacturing , 2002 .

[12]  Hans Petter Langtangen,et al.  Solving systems of partial differential equations using object-oriented programming techniques with coupled heat and fluid flow as example , 2001, TOMS.

[13]  G. Rubloff,et al.  Influence of gas composition on wafer temperature in a tungsten chemical vapor deposition reactor: Experimental measurements, model development, and parameter identification , 2001 .

[14]  Yiheng Xu Real-time in-situ chemical sensing, sensor-based film thickness metrology, and process control in W CVD process , 2001 .

[15]  R. P. Acosta,et al.  An Object-Oriented Framework for Parallel Incompressible Flow Simulations , 2001 .

[16]  G. M. Kepler,et al.  Reduced order model compensator control of species transport in a CVD reactor , 2000 .

[17]  Dimitrios Maroudas,et al.  Multiscale modeling of hard materials: Challenges and opportunities for chemical engineering , 2000 .

[18]  Thomas F. Edgar,et al.  Model-based control in rapid thermal processing , 2000 .

[19]  Raymond A. Adomaitis,et al.  A Computational Framework for Boundary-Value Problem Based Simulations , 2000, Simul..

[20]  M. Quirk,et al.  Semiconductor manufacturing technology , 2000 .

[21]  Thomas F. Edgar,et al.  Model-based control in microelectronics manufacturing , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[22]  R. Adomaitis,et al.  MWRtools: a library for weighted residual method calculations , 1999 .

[23]  Hans Petter Langtangen,et al.  Computational Partial Differential Equations - Numerical Methods and Diffpack Programming , 1999, Lecture Notes in Computational Science and Engineering.

[24]  Michael Pidd,et al.  Hierarchical modular modelling in discrete simulation , 1998, 1998 Winter Simulation Conference. Proceedings (Cat. No.98CH36274).

[25]  E. Zafiriou,et al.  Model reduction for optimization of rapid thermal chemical vapor deposition systems , 1998 .

[26]  Xing Cai,et al.  An object-oriented model for developing parallel PDE software , 1998 .

[27]  A. Emami-Naeini,et al.  Nonlinear model reduction for simulation and control of rapid thermal processing , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[28]  Gerhart Eigenberger,et al.  The MODUSIM concept for modular modeling and simulation in Chemical Engineering , 1997 .

[29]  Suman Banerjee,et al.  Nonlinear Model Reduction Strategies for Rapid Thermal Processing Systems , 1998, ICMTS 1998.

[30]  T. J. Mountziaris,et al.  Reaction kinetics and transport phenomena underlying the low-pressure metalorganic chemical vapor deposition of GaAs , 1996 .

[31]  Adele P. Peskin,et al.  An object-oriented approach to general purpose fluid dynamics software☆ , 1996 .

[32]  R. Mahajan Transport phenomena in chemical vapor-deposition systems , 1996 .

[33]  K. J. Kuijlaars,et al.  A detailed model for low-pressure CVD of tungsten , 1995 .

[34]  Thomas F. Edgar,et al.  Model-based control of rapid thermal processes , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[35]  M. Meyyappan,et al.  Computational Modeling in Semiconductor Processing , 1994 .

[36]  E. Yoon,et al.  The flexible modular approach in dynamic process simulation , 1994 .

[37]  Ralph Johnson,et al.  design patterns elements of reusable object oriented software , 2019 .

[38]  T. Edgar,et al.  Modeling of Gas‐Phase Chemistry in the Chemical Vapor Deposition of Polysilicon in a Cold Wall System , 1993 .

[39]  C. Kleijn,et al.  Modeling of Chemical Vapor Deposition of Tungsten Films , 1993 .

[40]  Klavs F. Jensen,et al.  Chemical vapor deposition : principles and applications , 1993 .

[41]  Thomas F. Edgar,et al.  Modeling and scale-up of multiwafer LPCVD reactors , 1992 .

[42]  T. A. Badgwell,et al.  MODELING AND CONTROL OF MICROELECTRONICS MATERIALS PROCESSING , 1992 .

[43]  Bruce A. Cota,et al.  A modification of the process interaction world view , 1992, TOMC.

[44]  W. Hulsbergen Examples and Results , 1992 .

[45]  Chris R. Kleijn,et al.  A Mathematical Model of the Hydrodynamics and Gas‐Phase Reactions in Silicon LPCVD in a Single‐Wafer Reactor , 1991 .

[46]  K. J. McLaughlin,et al.  Real-time monitoring and control in plasma etching , 1991, IEEE Control Systems.

[47]  Michael E. Coltrin,et al.  Si Deposition Rates in a Two‐Dimensional CVD Reactor and Comparisons with Model Calculations , 1990 .

[48]  H. H. Lee Fundamentals of Microelectronics Processing , 1990 .

[49]  Brice Carnahan,et al.  THE SEQUENTIAL-CLUSTERED METHOD FOR DYNAMIC CHEMICAL PLANT SIMULATION , 1990 .

[50]  Bernard P. Zeigler,et al.  Object-Oriented Simulation with Hierarchical, Modular Models: Intelligent Agents and Endomorphic Systems , 1990 .

[51]  J. Coleman,et al.  Ultraviolet laser‐assisted metalorganic chemical vapor deposition of GaAs , 1989 .

[52]  Klavs F. Jensen,et al.  Three‐Dimensional Flow Effects in Silicon CVD in Horizontal Reactors , 1988 .

[53]  K. Jensen,et al.  Low Pressure CVD of Silicon Nitride , 1987 .

[54]  W. Morton,et al.  The development of an equation-oriented flowsheet simulation and optimization package—I. The quasilin program , 1986 .

[55]  W. Morton,et al.  The development of an equation-oriented flowsheet simulation and optimization package—II. Examples and results , 1986 .

[56]  Magne Hillestad,et al.  Dynamic Simulation of Chemical Engineering Systems by the Sequential Modular Approach , 1986 .

[57]  Klavs F. Jensen,et al.  Chemical Vapor Deposition: A Chemical Engineering Perspective , 1985 .

[58]  R. Pollard,et al.  Thermal Diffusion Effects in Chemical Vapor Deposition Reactors , 1984 .

[59]  R. Pollard,et al.  Analysis of Chemical Vapor Deposition of Boron , 1984 .

[60]  Arthur W. Westerberg,et al.  Proceedings of the Second International Conference on Foundations of Computer-Aided Process Design , 1984 .

[61]  David B. Graves,et al.  Modeling and Analysis of Low Pressure CVD Reactors , 1983 .

[62]  J. W. Ponton,et al.  Dynamic process simulation using flowsheet structure , 1983 .

[63]  Mordechai Shacham,et al.  Equation oriented approach to process flowsheeting , 1982 .

[64]  Roger S. Pressman,et al.  Software Engineering: A Practitioner's Approach , 1982 .

[65]  G. Wahl Hydrodynamic description of CVD processes , 1977 .

[66]  R. Takahashi,et al.  Gas Flow Pattern and Mass Transfer Analysis in a Horizontal Flow Reactor for Chemical Vapor Deposition , 1972 .

[67]  H. Peek,et al.  A Stagnant Layer Model for the Epitaxial Growth of Silicon from Silane in a Horizontal Reactor , 1970 .

[68]  H. Langtangen,et al.  Developing Parallel Object-Oriented Simulation Codes in Diffpack , 2022 .