TMS over human frontal eye fields disrupts trans-saccadic memory of multiple objects.

We recently showed that transcranial magnetic stimulation (TMS) over the right parietal eye fields disrupts memory of object features and locations across saccades. We applied TMS over the frontal eye fields (FEF) as subjects compared the feature details of visual targets presented either within a single eye fixation (Fixation Task) or across a saccade (Saccade Task). TMS pulses were randomly delivered at one of 3 time intervals around the time of the saccade, or at equivalent times in the Fixation Task. A No-TMS control confirmed that subjects could normally retain approximately 3 visual features. TMS in the Fixation Task had no effect compared with No-TMS, but differences among TMS times were found during right FEF stimulation. TMS over either the right or left FEF disrupted memory performance in the Saccade Task when stimulation coincided most closely with the saccade. The capacity to compare pre-and postsaccadic features was reduced to 1-2 objects, as expected if the spatial aspect of memory was disrupted. These findings suggest that the FEF plays a role in the spatial processing involved in trans-saccadic memory of visual features. We propose that this process employs saccade-related feedback signals similar to those observed in spatial updating.

[1]  J. Grafman,et al.  Multiple visuospatial working memory buffers: Evidence from spatiotemporal patterns of brain activity , 1997, Neuropsychologia.

[2]  D. E. Irwin,et al.  Integration and accumulation of information across saccadic eye movements. , 1996 .

[3]  L A Krubitzer,et al.  Frontal eye field as defined by intracortical microstimulation in squirrel monkeys, owl monkeys, and macaque monkeys II. cortical connections , 1986, The Journal of comparative neurology.

[4]  J. Haxby,et al.  Functional anatomy of pursuit eye movements in humans as revealed by fMRI. , 1999, Journal of neurophysiology.

[5]  Leslie G. Ungerleider,et al.  Object and spatial visual working memory activate separate neural systems in human cortex. , 1996, Cerebral cortex.

[6]  C. Pierrot-Deseilligny,et al.  Posterior Parietal Cortex Control of Saccades in Humans , 1997 .

[7]  Leslie G. Ungerleider Two cortical visual systems , 1982 .

[8]  M. Corbetta,et al.  Top-Down Control of Human Visual Cortex by Frontal and Parietal Cortex in Anticipatory Visual Spatial Attention , 2008, The Journal of Neuroscience.

[9]  M. Goodale,et al.  Separate visual pathways for perception and action , 1992, Trends in Neurosciences.

[10]  A. Pascual-Leone,et al.  Studies in Cognition: The Problems Solved and Created by Transcranial Magnetic Stimulation , 2003, Journal of Cognitive Neuroscience.

[11]  J. Gottlieb From Thought to Action: The Parietal Cortex as a Bridge between Perception, Action, and Cognition , 2007, Neuron.

[12]  T. Paus,et al.  Transcranial Magnetic Stimulation of the Human Frontal Eye Field: Effects on Visual Perception and Attention , 2002, Journal of Cognitive Neuroscience.

[13]  Edward Awh,et al.  Spatial versus Object Working Memory: PET Investigations , 1995, Journal of Cognitive Neuroscience.

[14]  R. Deichmann,et al.  Concurrent TMS-fMRI and Psychophysics Reveal Frontal Influences on Human Retinotopic Visual Cortex , 2006, Current Biology.

[15]  C. Pierrot-Deseilligny,et al.  Eye movement control by the cerebral cortex , 2004, Current opinion in neurology.

[16]  Laurence R. Harris,et al.  Computational Vision in Neural and Machine Systems , 2007 .

[17]  M. Husain,et al.  Involvement of prefrontal cortex in visual search , 2007, Experimental Brain Research.

[18]  Maro G. Machizawa,et al.  Capacity limit of visual short-term memory in human posterior parietal cortex , 2004 .

[19]  R. Mansfield,et al.  Analysis of visual behavior , 1982 .

[20]  Ravi S. Menon,et al.  Human fMRI evidence for the neural correlates of preparatory set , 2002, Nature Neuroscience.

[21]  Gianluca Campana,et al.  Left frontal eye field remembers “where” but not “what” , 2007, Neuropsychologia.

[22]  E. Wassermann Risk and safety of repetitive transcranial magnetic stimulation: report and suggested guidelines from the International Workshop on the Safety of Repetitive Transcranial Magnetic Stimulation, June 5-7, 1996. , 1998, Electroencephalography and clinical neurophysiology.

[23]  David E. Irwin Robert D. Gordon Eye Movements, Attention and Trans-saccadic Memory , 1998 .

[24]  Robert H. Wurtz,et al.  Influence of the thalamus on spatial visual processing in frontal cortex , 2006, Nature.

[25]  R. Wurtz Neuronal mechanisms of visual stability , 2008, Vision Research.

[26]  J. Schlag,et al.  Illusory localization of stimuli flashed in the dark before saccades , 1995, Vision Research.

[27]  J. Rothwell,et al.  Transcranial magnetic stimulation in cognitive neuroscience – virtual lesion, chronometry, and functional connectivity , 2000, Current Opinion in Neurobiology.

[28]  Jeffrey D. Schall,et al.  Neural basis of saccade target selection in frontal eye field during visual search , 1993, Nature.

[29]  S. Dehaene,et al.  Interactions between number and space in parietal cortex , 2005, Nature Reviews Neuroscience.

[30]  A. Leventhal,et al.  Signal timing across the macaque visual system. , 1998, Journal of neurophysiology.

[31]  Jean Bullier,et al.  The Timing of Information Transfer in the Visual System , 1997 .

[32]  Dan Milea,et al.  Prefrontal cortex is involved in internal decision of forthcoming saccades , 2007, Neuroreport.

[33]  Michael S. Beauchamp,et al.  A Parametric fMRI Study of Overt and Covert Shifts of Visuospatial Attention , 2001, NeuroImage.

[34]  M. Corbetta,et al.  PET studies of parietal involvement in spatial attention: comparison of different task types. , 1994, Canadian journal of experimental psychology = Revue canadienne de psychologie experimentale.

[35]  R. Rafal,et al.  Localization of the human frontal eye fields and motor hand area with transcranial magnetic stimulation and magnetic resonance imaging , 1998, Neuropsychologia.

[36]  Neil G. Muggleton,et al.  Timing of Target Discrimination in Human Frontal Eye Fields , 2004, Journal of Cognitive Neuroscience.

[37]  Marlene Behrmann,et al.  Cortical systems mediating visual attention to both objects and spatial locations. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[38]  Leslie G. Ungerleider,et al.  Mechanisms of visual attention in the human cortex. , 2000, Annual review of neuroscience.

[39]  D. E. Irwin Memory for position and identity across eye movements. , 1992 .

[40]  O Hikosaka,et al.  Visualization of the information flow through human oculomotor cortical regions by transcranial magnetic stimulation. , 1998, Journal of neurophysiology.

[41]  Edward K. Vogel,et al.  The capacity of visual working memory for features and conjunctions , 1997, Nature.

[42]  Carlo Miniussi,et al.  Effects of Right Parietal Transcranial Magnetic Stimulation on Object Identification and Orientation Judgments , 2008, Journal of Cognitive Neuroscience.

[43]  Neil G. Muggleton,et al.  On the roles of the human frontal eye fields and parietal cortex in visual search , 2006 .

[44]  W. Eddy,et al.  Pursuit and saccadic eye movement subregions in human frontal eye field: a high-resolution fMRI investigation. , 2002, Cerebral cortex.

[45]  H. Honda The time courses of visual mislocalization and of extraretinal eye position signals at the time of vertical saccades , 1991, Vision Research.

[46]  Björn N. S. Vlaskamp,et al.  TMS pulses on the frontal eye fields break coupling between visuospatial attention and eye movements. , 2007, Journal of neurophysiology.

[47]  Clayton E Curtis,et al.  Selection and maintenance of saccade goals in the human frontal eye fields. , 2006, Journal of neurophysiology.

[48]  G. Mangun,et al.  The neural mechanisms of top-down attentional control , 2000, Nature Neuroscience.

[49]  R M Müri,et al.  Double‐pulse transcranial magnetic stimulation over the frontal eye field facilitates triggering of memory‐guided saccades , 2001, The European journal of neuroscience.

[50]  David E. Irwin Information integration across saccadic eye movements , 1991, Cognitive Psychology.

[51]  C. Colby,et al.  Trans-saccadic perception , 2008, Trends in Cognitive Sciences.

[52]  G. Thickbroom,et al.  Transcranial magnetic stimulation mapping of the motor cortex in normal subjects The representation of two intrinsic hand muscles , 1993, Journal of the Neurological Sciences.

[53]  M. Bickford,et al.  Synaptic organization of connections between the temporal cortex and pulvinar nucleus of the tree shrew. , 2010, Cerebral cortex.

[54]  T. Vilis,et al.  Gaze-Centered Updating of Visual Space in Human Parietal Cortex , 2003, The Journal of Neuroscience.

[55]  Tony Ro,et al.  Modulation of antisaccades by transcranial magnetic stimulation of the human frontal eye field. , 2006, Cerebral cortex.

[56]  J C Rothwell,et al.  The planning and guiding of reading saccades: a repetitive transcranial magnetic stimulation study. , 2001, Cerebral cortex.

[57]  Etienne Olivier,et al.  Contribution of the Monkey Frontal Eye Field to Covert Visual Attention , 2006, The Journal of Neuroscience.

[58]  E Marg,et al.  Finding the depth of magnetic brain stimulation: a re-evaluation. , 1994, Electroencephalography and clinical neurophysiology.

[59]  K. Shapiro,et al.  The contingent negative variation (CNV) event-related potential (ERP) predicts the attentional blink , 2008 .

[60]  F. Tong,et al.  Decoding reveals the contents of visual working memory in early visual areas , 2009, Nature.

[61]  M Hallett,et al.  Topographic mapping of the human motor cortex with magnetic stimulation: factors affecting accuracy and reproducibility. , 1992, Electroencephalography and clinical neurophysiology.

[62]  Peter Thier,et al.  Parietal Lobe Contributions to Orientation in 3D Space , 1997 .

[63]  C. Bruce,et al.  Topography of projections to posterior cortical areas from the macaque frontal eye fields , 1995, The Journal of comparative neurology.

[64]  Transcranial magnetic brain stimulation: lack of oculomotor response , 2004, Experimental Brain Research.

[65]  Bart Krekelberg,et al.  Postsaccadic visual references generate presaccadic compression of space , 2000, Nature.

[66]  Junying Yuan,et al.  Selective gating of visual signals by microstimulation of frontal cortex , 2022 .

[67]  D. Melcher Spatiotopic Transfer of Visual-Form Adaptation across Saccadic Eye Movements , 2005, Current Biology.

[68]  Thomas Wachtler,et al.  Perceptual evidence for saccadic updating of color stimuli. , 2008, Journal of vision.

[69]  O. Tzeng,et al.  Segregation of visual selection and saccades in human frontal eye fields. , 2008, Cerebral cortex.

[70]  M. Ernst,et al.  The statistical determinants of adaptation rate in human reaching. , 2008, Journal of vision.

[71]  C. Genovese,et al.  Spatial Updating in Human Parietal Cortex , 2003, Neuron.

[72]  Ivan N Pigarev,et al.  Neural Mechanisms of Visual Attention: How Top-Down Feedback Highlights Relevant Locations , 2007, Science.

[73]  Andreas Nieder,et al.  A parieto-frontal network for visual numerical information in the monkey. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[74]  John H. R. Maunsell,et al.  Topographic organization of the middle temporal visual area in the macaque monkey: Representational biases and the relationship to callosal connections and myeloarchitectonic boundaries , 1987, The Journal of comparative neurology.

[75]  G. Woodman,et al.  Storage of features, conjunctions and objects in visual working memory. , 2001, Journal of experimental psychology. Human perception and performance.

[76]  M. Hayhoe,et al.  Integration of Form across Saccadic Eye Movements , 1991, Perception.

[77]  K. Rayner Eye movements in reading and information processing: 20 years of research. , 1998, Psychological bulletin.

[78]  Chi-Hung Juan,et al.  Human frontal eye fields and visual search. , 2003, Journal of neurophysiology.

[79]  Toma S Pauss Imaging the brain before \ during \ and after transcranial magnetic stimulation , 2022 .

[80]  J. M. Miller,et al.  Egocentric localization of a perisaccadic flash by manual pointing , 1996, Vision Research.

[81]  E. Miller,et al.  Response to Comment on "Top-Down Versus Bottom-Up Control of Attention in the Prefrontal and Posterior Parietal Cortices" , 2007, Science.

[82]  J. Bullier,et al.  Topography of visual cortex connections with frontal eye field in macaque: convergence and segregation of processing streams , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[83]  M. Goldberg,et al.  Space and attention in parietal cortex. , 1999, Annual review of neuroscience.

[84]  Alan C. Evans,et al.  Transcranial Magnetic Stimulation during Positron Emission Tomography: A New Method for Studying Connectivity of the Human Cerebral Cortex , 1997, The Journal of Neuroscience.

[85]  T. Paus Location and function of the human frontal eye-field: A selective review , 1996, Neuropsychologia.

[86]  R. Wong,et al.  Ventricle-directed migration in the developing cerebral cortex , 2002, Nature Neuroscience.

[87]  R. Dolan,et al.  Active representation of shape and spatial location in man. , 1996, Cerebral cortex.

[88]  J R Duhamel,et al.  The updating of the representation of visual space in parietal cortex by intended eye movements. , 1992, Science.

[89]  J Douglas Crawford,et al.  Transcranial Magnetic Stimulation over Posterior Parietal Cortex Disrupts Transsaccadic Memory of Multiple Objects , 2008, The Journal of Neuroscience.

[90]  David Melcher,et al.  Subthreshold features of visual objects: Unseen but not unbound , 2006, Vision Research.

[91]  Junghyun Park,et al.  Non-veridical visual motion perception immediately after saccades , 2001, Vision Research.

[92]  J. Douglas Crawford,et al.  Visual memory capacity in transsaccadic integration , 2007, Experimental Brain Research.

[93]  Chi-Hung Juan,et al.  Dissociation of spatial attention and saccade preparation. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[94]  Albert Postma,et al.  Spatial working memory performance after high-frequency repetitive transcranial magnetic stimulation of the left and right posterior parietal cortex in humans , 2000, Neuroscience Letters.

[95]  Ralph Weidner,et al.  The neural mechanisms underlying the Müller-Lyer illusion and its interaction with visuospatial judgments. , 2007, Cerebral cortex.

[96]  C. W. Hess,et al.  Transcranial stimulation of the human frontal eye field by magnetic pulses , 2004, Experimental Brain Research.

[97]  Charles M. Epstein,et al.  Localizing the site of magnetic brain stimulation in humans , 1990, Neurology.

[98]  D. Munoz,et al.  Look away: the anti-saccade task and the voluntary control of eye movement , 2004, Nature Reviews Neuroscience.

[99]  M. Chun,et al.  Dissociable neural mechanisms supporting visual short-term memory for objects , 2006, Nature.

[100]  Neil G. Muggleton,et al.  Human Frontal Eye Fields and Spatial Priming of Pop-out , 2007, Journal of Cognitive Neuroscience.

[101]  B. Gaymard,et al.  The frontal eye field is involved in spatial short-term memory but not in reflexive saccade inhibition , 1999, Experimental Brain Research.

[102]  C. Pierrot-Deseilligny,et al.  Cortical control of saccades in man. , 1991, Acta neurologica Belgica.

[103]  Fred H. Hamker,et al.  A computational model of visual stability and change detection during eye movements in real-world scenes , 2005 .

[104]  M. Goldberg,et al.  Spatial processing in the monkey frontal eye field. I. Predictive visual responses. , 1997, Journal of neurophysiology.

[105]  E. Matin Saccadic suppression: a review and an analysis. , 1974, Psychological bulletin.

[106]  J. Crawford,et al.  Transsaccadic integration of visual features in a line intersection task , 2006, Experimental Brain Research.

[107]  P. Goldman-Rakic,et al.  Activation of human prefrontal cortex during spatial and nonspatial working memory tasks measured by functional MRI. , 1996, Cerebral cortex.

[108]  R. Deichmann,et al.  Distinct causal influences of parietal versus frontal areas on human visual cortex: evidence from concurrent TMS-fMRI. , 2008, Cerebral cortex.

[109]  C Caltagirone,et al.  Parieto-frontal interactions in visual-object and visual-spatial working memory: evidence from transcranial magnetic stimulation. , 2001, Cerebral cortex.

[110]  Edward E. Smith,et al.  Spatial working memory in humans as revealed by PET , 1993, Nature.

[111]  M. Goldberg,et al.  Saccades, salience and attention: the role of the lateral intraparietal area in visual behavior. , 2006, Progress in brain research.

[112]  Henrik Foltys,et al.  Visual and motor cortex excitability: a transcranial magnetic stimulation study , 2002, Clinical Neurophysiology.

[113]  Bradley R. Postle,et al.  Delay-period Activity in the Prefrontal Cortex: One Function Is Sensory Gating , 2005, Journal of Cognitive Neuroscience.

[114]  Chris Rorden,et al.  Transcranial magnetic stimulation of the left human frontal eye fields eliminates the cost of invalid endogenous cues , 2005, Neuropsychologia.

[115]  D. E. Irwin Integrating Information Across Saccadic Eye Movements , 1996 .

[116]  C. Curtis Prefrontal and parietal contributions to spatial working memory , 2006, Neuroscience.

[117]  Tony Ro,et al.  Locating the Human Frontal Eye Fields With Transcranial Magnetic Stimulation , 2002, Journal of clinical and experimental neuropsychology.

[118]  T. Paus,et al.  Cortical regions involved in eye movements, shifts of attention, and gaze perception , 2005, Human brain mapping.

[119]  Chris Rorden,et al.  The anatomy of spatial neglect based on voxelwise statistical analysis: a study of 140 patients. , 2004, Cerebral cortex.

[120]  H. Honda Modification of saccade-contingent visual mislocalization by the presence of a visual frame of reference , 1999, Vision Research.

[121]  P. Pala,et al.  Domain interactions of H–2 class I antigens alter cytotoxic T-cell recognition sites , 1984, Nature.

[122]  M. Scherg,et al.  Mental Chronometry of Working Memory Retrieval: A Combined Functional Magnetic Resonance Imaging and Event-Related Potentials Approach , 2006, The Journal of Neuroscience.

[123]  S. Neggers,et al.  Brain areas involved in spatial working memory , 2006, Neuropsychologia.

[124]  F. Hamker The reentry hypothesis: the putative interaction of the frontal eye field, ventrolateral prefrontal cortex, and areas V4, IT for attention and eye movement. , 2005, Cerebral cortex.

[125]  Goldberg Me,et al.  Higher centers concerned with eye movement and visual attention: cerebral cortex and thalamus. , 1988 .

[126]  R. Andersen,et al.  Intentional maps in posterior parietal cortex. , 2002, Annual review of neuroscience.

[127]  Leslie G. Ungerleider,et al.  An area specialized for spatial working memory in human frontal cortex. , 1998, Science.

[128]  R. Wurtz,et al.  Brain circuits for the internal monitoring of movements. , 2008, Annual review of neuroscience.

[129]  M. Corbetta,et al.  A Common Network of Functional Areas for Attention and Eye Movements , 1998, Neuron.

[130]  Á. Pascual-Leone,et al.  Transcranial magnetic stimulation: studying the brain-behaviour relationship by induction of 'virtual lesions'. , 1999, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[131]  Paul M Bays,et al.  Dynamic Shifts of Limited Working Memory Resources in Human Vision , 2008, Science.

[132]  Maro G. Machizawa,et al.  Neural activity predicts individual differences in visual working memory capacity , 2004, Nature.

[133]  M. Posner,et al.  Mental Chronometry in the Study of Individual and Group Differences , 2002, Journal of clinical and experimental neuropsychology.

[134]  M. Goldberg,et al.  Spatial processing in the monkey frontal eye field. II. Memory responses. , 2001, Journal of neurophysiology.

[135]  Tracy R. Henderson,et al.  Simple metric for scaling motor threshold based on scalp-cortex distance: application to studies using transcranial magnetic stimulation. , 2005, Journal of neurophysiology.

[136]  R. Rafal,et al.  Transcranial Magnetic Stimulation of the Prefrontal Cortex Delays Contralateral Endogenous Saccades , 1997, Journal of Cognitive Neuroscience.

[137]  S P Wise,et al.  Cortical areas with enhanced activation during object-centred spatial information processing. A PET study. , 1998, Brain : a journal of neurology.

[138]  J. Rothwell,et al.  Motor and phosphene thresholds: a transcranial magnetic stimulation correlation study , 2001, Neuropsychologia.

[139]  J. Bullier Integrated model of visual processing , 2001, Brain Research Reviews.

[140]  J. Tanji,et al.  Numerical representation for action in the parietal cortex of the monkey , 2002, Nature.

[141]  Juha Silvanto,et al.  Stimulation of the human frontal eye fields modulates sensitivity of extrastriate visual cortex. , 2006, Journal of neurophysiology.

[142]  J. Büttner-Ennever Neuroanatomy of the oculomotor system , 1988 .