Quantum renormalization group and holography

A bstractQuantum renormalization group scheme provides a microscopic understanding of holography through a general mapping between the beta functions of underlying quantum field theories and the holographic actions in the bulk. We show that the Einstein gravity emerges as a holographic description upto two derivative order for a matrix field theory which has no other operator with finite scaling dimension except for the energymomentum tensor. We also point out that holographic actions for general large N matrix field theories respect the inversion symmetry along the radial direction in the bulk if the beta functions of single-trace operators are gradient flows with respect to the target space metric set by the beta functions of double-trace operators.

[1]  Sung-Sik Lee Background independent holographic description: from matrix field theory to quantum gravity , 2012, 1204.1780.

[2]  A. Sakharov SPECIAL ISSUE: Vacuum quantum fluctuations in curved space and the theory of gravitation , 1991 .

[3]  J. de Boer,et al.  On the holographic renormalization group , 1999 .

[4]  Joseph Polchinski,et al.  Renormalization and effective lagrangians , 1984 .

[5]  The Wilson–Polchinski renormalization group equation in the planar limit , 2002, hep-th/0202155.

[6]  J. Maldacena The Large-N Limit of Superconformal Field Theories and Supergravity , 1997, hep-th/9711200.

[7]  E. Kiritsis Lorentz violation, gravity, dissipation and holography , 2012, 1207.2325.

[8]  D. Blas,et al.  On the extra mode and inconsistency of Hořava gravity , 2009, 0906.3046.

[9]  C. Wetterich,et al.  Exact evolution equation for the effective potential , 1993, 1710.05815.

[10]  K. Wilson The renormalization group and critical phenomena , 1983 .

[11]  H. Osborn Weyl consistency conditions and a local renormalisation group equation for general renormalisable field theories , 1991 .

[12]  A. Polyakov,et al.  Gauge Theory Correlators from Non-Critical String Theory , 1998, hep-th/9802109.

[13]  Kostas Skenderis Lecture notes on holographic renormalization , 2002 .

[14]  Shlomo S. Razamat,et al.  Holographic dual of free field theory , 2010, 1011.4926.

[15]  AdS dual of the critical O(N) vector model , 2002, hep-th/0210114.

[16]  SYMPLECTIC GEOMETRY AND HAMILTONIAN FLOW OF THE RENORMALIZATION GROUP EQUATION , 1994, hep-th/9406061.

[17]  E. Akhmedov A remark on the AdS/CFT correspondence and the renormalization group flow , 1998 .

[18]  Stanley Deser,et al.  Dynamical Structure and Definition of Energy in General Relativity , 1959 .

[19]  M. Visser SAKHAROV'S INDUCED GRAVITY: A MODERN PERSPECTIVE , 2002, gr-qc/0204062.

[20]  M. Henneaux,et al.  A dynamical inconsistency of Horava gravity , 2009, 0912.0399.

[21]  E. Witten Anti-de Sitter space and holography , 1998, hep-th/9802150.

[22]  T. Faulkner,et al.  Integrating out geometry: holographic Wilsonian RG and the membrane paradigm , 2010, 1010.4036.

[23]  Joseph Polchinski,et al.  Holographic and Wilsonian renormalization groups , 2010, 1010.1264.

[24]  Sung-Sik Lee Holographic description of large N gauge theory , 2010, 1011.1474.