Dynamic path bifurcation for the Beckmann reaction: observation and implication

The reaction of oximes to amides, known as the Beckmann rearrangement, may undergo fragmentation to form carbocations + nitriles instead of amides when the cations have reasonable stability. The reactions of oxime derivatives of 1-substituted-phenyl-2-propanones and 3-substituted-phenyl-2-butanones in aqueous solvents gave both rearrangement and fragmentation products, the ratio of which was dependent on substituents. Transition state (TS) optimizations and intrinsic reaction coordinate (IRC) calculations for the reaction of 1-phenyl-2-propanone oximes showed that there is a single TS for each substituted compound. The IRC path from the TS either led to a rearrangement product or a fragmentation product depending on the substituent; the IRC path changes from rearrangement to fragmentation when substituent X becomes more electron donating. Ab initio dynamics simulations were found to follow the IRC path for X = p-NH2 and p-MeO giving fragmentation products, and almost so for X = p-NO2 giving the rearrangement products. However, in a borderline case where X is less donating than p-MeO or less withdrawing than p-NO2, the trajectories did not follow the minimum energy path on the potential energy surface, but gave both rearrangement and fragmentation products directly from the single TS. This is a novel example of path bifurcation for a closed shell anionic reaction. It was concluded that a reactivity-selectivity argument based on the traditional TS theory may not always be applicable even to a well-known textbook organic reaction.

[1]  Takeshi Ishikawa,et al.  Fragment Molecular Orbital method‐based Molecular Dynamics (FMO‐MD) as a simulator for chemical reactions in explicit solvation , 2009, J. Comput. Chem..

[2]  K. Houk,et al.  Theoretical prediction of a perepoxide intermediate for the reaction of singlet oxygen with trans-cyclooctene contrasts with the two-step no-intermediate ene reaction for acyclic alkenes. , 2008, The Journal of organic chemistry.

[3]  Lai Xu,et al.  Bifurcations on potential energy surfaces of organic reactions. , 2008, Angewandte Chemie.

[4]  K. Houk,et al.  Effect of Lewis acid catalysts on Diels-Alder and hetero-Diels-Alder cycloadditions sharing a common transition state. , 2008, The Journal of organic chemistry.

[5]  I. Keresztes,et al.  Evidence for Nonstatistical Dynamics in the Wolff Rearrangement of a Carbene , 2008, Journal of the American Chemical Society.

[6]  Takeshi Ishikawa,et al.  How does an S(N)2 reaction take place in solution? Full ab initio MD simulations for the hydrolysis of the methyl diazonium ion. , 2008, Journal of the American Chemical Society.

[7]  M. Abe,et al.  Notable effect of an electron-withdrawing group at C3 on the selective formation of alkylidenecyclobutanes in the thermal denitrogenation of 4-spirocyclopropane-1-pyrazolines. Nonstatistical dynamics effects in the denitrogenation reactions. , 2007, Journal of the American Chemical Society.

[8]  K. Song,et al.  Central barrier recrossing dynamics of the Cl−+CD3Cl SN2 reaction , 2006 .

[9]  S. C. Ammal,et al.  Computation Revealed a Case Where Kinetic Selectivity Is Controlled by Dynamics: Isomerization of Benzylideneanilines , 2006 .

[10]  C. Hang,et al.  Dynamic effects on the periselectivity, rate, isotope effects, and mechanism of cycloadditions of ketenes with cyclopentadiene. , 2006, Journal of the American Chemical Society.

[11]  Jie Li,et al.  A single transition state serves two mechanisms. The branching ratio for CH2O*- + CH3Cl on improved potential energy surfaces. , 2006, The journal of physical chemistry. A.

[12]  K. Houk,et al.  Dynamics of the degenerate rearrangement of bicyclo[3.1.0]hex-2-ene. , 2006, Journal of the American Chemical Society.

[13]  R. Zare,et al.  Reaction products with internal energy beyond the kinematic limit result from trajectories far from the minimum energy path: an example from H + HBr --> H2 + Br. , 2005, Journal of the American Chemical Society.

[14]  Chad F. Christian,et al.  "Concerted" transition state, stepwise mechanism. Dynamics effects in C2-C6 enyne allene cyclizations. , 2005, Journal of the American Chemical Society.

[15]  K. Houk,et al.  Dynamic effects on [3,3] and [1,3] shifts of 6-methylenebicyclo[3.2.0]hept-2-ene. , 2005, Angewandte Chemie.

[16]  S. K. Lee,et al.  The Roaming Atom: Straying from the Reaction Path in Formaldehyde Decomposition , 2004, Science.

[17]  H. Schlegel,et al.  Dissociation of acetone radical cation (CH3COCH3+˙→ CH3CO++CH3˙): An ab initio direct classical trajectory study , 2004 .

[18]  H. Bernhard Schlegel,et al.  Single Transition State Serves Two Mechanisms. Ab Initio Classical Trajectory Calculations of the Substitution-Electron Transfer Branching Ratio in CH2O ¥- + CH3Cl , 2004 .

[19]  K. Song,et al.  Transition state dynamics and a QM/MM model for the Cl + C2H5Cl SN2 reaction , 2004 .

[20]  Michael Hirsch,et al.  An approach to reaction path branching using valley–ridge inflection points of potential-energy surfaces , 2004 .

[21]  B. K. Carpenter Nonexponential decay of reactive intermediates: new challenges for spectroscopic observation, kinetic modeling and mechanistic interpretation , 2003 .

[22]  M. Aida,et al.  Ab initio molecular dynamics studies on substitution vs electron transfer reactions of substituted ketyl radical anions with chloroalkanes: how do the two products form in a borderline mechanism? , 2003 .

[23]  Michel Dupuis,et al.  Dynamics-Driven Reaction Pathway in an Intramolecular Rearrangement , 2003, Science.

[24]  Michael J Szymanski,et al.  A new form of kinetic isotope effect. Dynamic effects on isotopic selectivity and regioselectivity. , 2003, Journal of the American Chemical Society.

[25]  M. Aida,et al.  Ab Initio Direct Molecular Dynamics Simulations and QM/MM Computations in Search of Organic Reaction Mechanisms , 2002 .

[26]  B. Carpenter,et al.  Nonstatistical dynamics in deep potential wells: a quasiclassical trajectory study of methyl loss from the acetone radical cation. , 2002, Journal of the American Chemical Society.

[27]  Stefan L. Debbert,et al.  The iconoclastic dynamics of the 1,2,6-heptatriene rearrangement. , 2002, Journal of the American Chemical Society.

[28]  Kihyung Song,et al.  A SN2 Reaction That Avoids Its Deep Potential Energy Minimum , 2002, Science.

[29]  D. J. Mann,et al.  Ab initio direct dynamics study of cyclopropyl radical ring-opening. , 2002, Journal of the American Chemical Society.

[30]  M. Aida,et al.  Analysis of borderline substitution/electron transfer pathways from direct ab initio MD simulations , 2002 .

[31]  C. Doubleday,et al.  Dynamics of the biradical mediating vinylcyclopropane–cyclopentene rearrangement , 2002 .

[32]  C. Doubleday Mechanism of the Vinylcyclopropane−Cyclopentene Rearrangement Studied by Quasiclassical Direct Dynamics , 2001 .

[33]  Kihyung Song,et al.  Trajectory Studies of SN2 Nucleophilic Substitution. 8. Central Barrier Dynamics for Gas Phase Cl- + CH3Cl , 2001 .

[34]  Tetsuya Taketsugu,et al.  An ab initio direct-trajectory study of the kinetic isotope effect on the bifurcating reaction , 2001 .

[35]  S. Shaik,et al.  A single transition state serves two mechanisms: an ab initio classical trajectory study of the electron transfer and substitution mechanisms in reactions of ketyl radical anions with alkyl halides. , 2001, Journal of the American Chemical Society.

[36]  Müller-Plathe,et al.  The Photoisomerization of cis-Stilbene Does Not Follow the Minimum Energy Path. , 1999, Angewandte Chemie.

[37]  H. Yamataka,et al.  Thermodynamic Stabilities and Resonance Demand of Aromatic Radical Anions in the Gas Phase , 1999 .

[38]  K. Houk,et al.  Direct Dynamics Quasiclassical Trajectory Study of the Stereochemistry of the Vinylcyclopropane−Cyclopentene Rearrangement , 1999 .

[39]  William L. Hase,et al.  A QM/MM Direct Dynamics Trajectory Investigation of Trimethylene Decomposition in an Argon Bath , 1999 .

[40]  Michel Dupuis,et al.  One transition state leading to two product states: ab initio molecular dynamics simulations of the reaction of formaldehyde radical anion and methyl chloride , 1999 .

[41]  M. Gordon,et al.  Dynamic reaction path study of SiH4+F−→SiH4F− and the Berry pseudorotation with valley–ridge inflection , 1998 .

[42]  Mayra B. Reyes,et al.  EVIDENCE FOR INTERCEPTION OF NONSTATISTICAL REACTIVE TRAJECTORIES FOR A SINGLET BIRADICAL IN SUPERCRITICAL PROPANE , 1998 .

[43]  Makoto Taiji,et al.  Fast and accurate molecular dynamics simulation of a protein using a special‐purpose computer , 1997 .

[44]  D. Hrovat,et al.  Investigation of Cyclopropane Stereomutation by Quasiclassical Trajectories on an Analytical Potential Energy Surface , 1997 .

[45]  B. Carpenter,et al.  Bimodal Distribution of Lifetimes for an Intermediate from a Quasiclassical Dynamics Simulation , 1996 .

[46]  William L. Hase,et al.  DIRECT DYNAMICS SIMULATION OF THE LIFETIME OF TRIMETHYLENE , 1996 .

[47]  Mustanir,et al.  Gas-Phase Substituent Effects in Stabilized Benzylic Carbocations. Basicities of Benzaldehydes, Acetophenones, and Methyl Benzoates in the Gas Phase^ , 1996 .

[48]  B. Carpenter,et al.  Dynamic Matching: The Cause of Inversion of Configuration in the [1,3] Sigmatropic Migration? , 1995 .

[49]  Barry K. Carpenter,et al.  Dynamic models for the thermal deazetization of 2,3-diazabicyclo[2.2.1]hept-2-ene , 1993 .

[50]  B. Carpenter,et al.  Intramolecular Dynamics for the Organic Chemist , 1992 .

[51]  Mark S. Gordon,et al.  A New Twist on Pseudorotation , 1991 .

[52]  B. K. Carpenter Trajectories through an intermediate at a fourfold branch point. Implications for the stereochemistry of biradical reactions , 1985 .

[53]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[54]  M. A. Waugh,et al.  Effect of trimethylsilyl groups on Beckmann rearrangements and fragmentations , 1984 .

[55]  K. Itoh,et al.  Silicon-directed beckmann fragmentation. Catalytic cleavage of cyclic β-trimethylsilylketoxime acetates with trimethylsilyl trifluoromethanesulfonate , 1984 .

[56]  S. Miyano,et al.  Carbon-Carbon Bond Formation by the Use of Chloroiodomethane as a C1 Unit. III. A Convenient Synthesis of the Mannich Base from Enol Silyl Ether by a Combination of Chloroiodomethane and N,N,N′,N′-Tetramethylmethanediamine , 1982 .

[57]  P. Wenk,et al.  Mechanism of the beckmann rearrangement of α,β-unsaturated ketoximes , 1976 .

[58]  M. Stajić,et al.  THE BECKMANN FRAGMENTATION REACTION OF SOME ALPHA-HYDROXY KETOXIMES , 1974 .

[59]  S. Nelson,et al.  Beckmann rearrangement and fission of 2-arylcyclohexanone oxime tosylates. Trapping of carbonium ion intermediates as pyridinium cations , 1969 .

[60]  R. L. Autrey,et al.  Beckmann fragmentation of an .alpha.-methylthio ketoxime , 1968 .

[61]  E. Thornton A simple theory for predicting the effects of substituent changes on transition-state geometry , 1967 .

[62]  J E Leffler,et al.  Parameters for the Description of Transition States. , 1953, Science.

[63]  R. Tipson ON ESTERS OF p-TOLUENESULFONIC ACID , 1944 .

[64]  J. Ide,et al.  Beckmann Fragmentation and Rearrangement. Part VI thian‐3‐one oximes. Fragmentation reactions no. 26 , 1974 .

[65]  J. Ide,et al.  Beckmann Fragmentation and Rearrangement. Part VII. Fragmentation and cyclization of α‐methylthio‐ketoximes. Fragmentation reactions no. 27 , 1974 .

[66]  A. Hassner,et al.  The beckmann cleavage of 1,1diaryl-2-propanone oximes.☆ , 1965 .

[67]  C. Grob,et al.  BECKMANN-Umlagerung und Fragmentierung. 1. Teil. Mechanismus sowie Nachweis der Zwischenstufen Fragmentierungsreaktionen. 7. Mitteilung , 1964 .

[68]  C. Grob,et al.  Die Fragmentierung von α‐Aminoketoximen. BECKMANN‐Reaktionen zweiter Art. I. Teil. Fragmentierungs‐Reaktionen. 4. Mitteilung , 1962 .

[69]  George S. Hammond,et al.  A Correlation of Reaction Rates , 1955 .

[70]  H. Hass,et al.  NITRO ALKENE DERIVATIVES1 , 1950 .