A correlated topic model of Science
暂无分享,去创建一个
[1] F. Mosteller,et al. Inference and Disputed Authorship: The Federalist , 1966 .
[2] J. Atchison,et al. Logistic-normal distributions:Some properties and uses , 1980 .
[3] S. Shen,et al. The statistical analysis of compositional data , 1983 .
[4] J. Aitchison. A General Class of Distributions on the Simplex , 1985 .
[6] G. C. Wei,et al. A Monte Carlo Implementation of the EM Algorithm and the Poor Man's Data Augmentation Algorithms , 1990 .
[7] Michael I. Jordan,et al. Mean Field Theory for Sigmoid Belief Networks , 1996, J. Artif. Intell. Res..
[8] R. Tibshirani. Regression Shrinkage and Selection via the Lasso , 1996 .
[9] Hoon Kim,et al. Monte Carlo Statistical Methods , 2000, Technometrics.
[10] P. Donnelly,et al. Inference of population structure using multilocus genotype data. , 2000, Genetics.
[11] David J. Spiegelhalter,et al. VIBES: A Variational Inference Engine for Bayesian Networks , 2002, NIPS.
[12] Elena A. Erosheva,et al. Grade of membership and latent structure models with application to disability survey data , 2002 .
[13] Michael I. Jordan,et al. A generalized mean field algorithm for variational inference in exponential families , 2002, UAI.
[14] Michael I. Jordan,et al. Modeling annotated data , 2003, SIGIR.
[15] Ata Kabán,et al. Simplicial Mixtures of Markov Chains: Distributed Modelling of Dynamic User Profiles , 2003, NIPS.
[16] Michael I. Jordan,et al. Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..
[17] Thomas L. Griffiths,et al. Integrating Topics and Syntax , 2004, NIPS.
[18] Benjamin M. Marlin,et al. Collaborative Filtering: A Machine Learning Perspective , 2004 .
[19] Michael I. Jordan,et al. An Introduction to Variational Methods for Graphical Models , 1999, Machine Learning.
[20] Thomas L. Griffiths,et al. The Author-Topic Model for Authors and Documents , 2004, UAI.
[21] Christian P. Robert,et al. Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.
[22] J. Lafferty,et al. Mixed-membership models of scientific publications , 2004, Proceedings of the National Academy of Sciences of the United States of America.
[23] Mark Steyvers,et al. Finding scientific topics , 2004, Proceedings of the National Academy of Sciences of the United States of America.
[24] Andrew McCallum,et al. The Author-Recipient-Topic Model for Topic and Role Discovery in Social Networks: Experiments with Enron and Academic Email , 2005 .
[25] Pietro Perona,et al. A Bayesian hierarchical model for learning natural scene categories , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).
[26] Alexei A. Efros,et al. Discovering object categories in image collections , 2005 .
[27] John D. Lafferty,et al. Correlated Topic Models , 2005, NIPS.
[28] N. Meinshausen,et al. High-dimensional graphs and variable selection with the Lasso , 2006, math/0608017.
[29] Edoardo M. Airoldi,et al. Combining Stochastic Block Models and Mixed Membership for Statistical Network Analysis , 2006, SNA@ICML.
[30] Michael I. Jordan,et al. Hierarchical Dirichlet Processes , 2006 .
[31] Michael I. Jordan,et al. Variational inference for Dirichlet process mixtures , 2006 .
[32] S. Fienberg,et al. DESCRIBING DISABILITY THROUGH INDIVIDUAL-LEVEL MIXTURE MODELS FOR MULTIVARIATE BINARY DATA. , 2007, The annals of applied statistics.
[33] Michael I. Jordan,et al. Graphical Models, Exponential Families, and Variational Inference , 2008, Found. Trends Mach. Learn..