SoK: Communication Across Distributed Ledgers

Communication across distributed systems, each running its own consensus, is a problem previously studied under the assumption of trust across systems. With the appearance of distributed ledgers or blockchains, numerous protocols have emerged, which attempt to achieve trustless communication between distrusting ledgers and participants. Cross-chain communication thereby plays a fundamental role in cryptocurrency exchanges, sharding, bootstrapping and extension of distributed ledgers. Unfortunately, existing proposals are designed ad-hoc for specific use-cases, making it hard to gain confidence on their correctness and to use them as building blocks for new systems. We provide the first systematic exposition of protocols for cross-chain communication. First, we formalize the underlying research problem and show cross-chain communication is impossible without a trusted third party, contrary to common beliefs in the blockchain community. We then develop a framework for evaluating existing and designing new crosschain protocols, based on use case, trust model and security assumptions of interlinked blockchains. Finally, we identify security and privacy challenges faced by protocols in the cross-chain setting. This Systematization of Knowledge (SoK) offers a comprehensive guide for designing protocols bridging the numerous distributed ledgers available today and aims to facilitate clearer communication between academia and industry in

[1]  Edsger W. Dijkstra,et al.  Solution of a problem in concurrent programming control , 1965, CACM.

[2]  Nancy A. Lynch,et al.  Impossibility of distributed consensus with one faulty process , 1983, PODS '83.

[3]  Shimon Even,et al.  A protocol for signing contracts , 1983, SIGA.

[4]  K. Itakura,et al.  A public-key cryptosystem suitable for digital multisignatures , 1983 .

[5]  A. Yao How to generate and exchange secrets , 1986, 27th Annual Symposium on Foundations of Computer Science (sfcs 1986).

[6]  Ralph C. Merkle,et al.  A Digital Signature Based on a Conventional Encryption Function , 1987, CRYPTO.

[7]  Leslie Lamport,et al.  Artificial Intelligence and Language Processing ]acques Cohen Editor a Simple Approach to Specifying Concurrent Systems , 2022 .

[8]  Ozalp Babaoglu,et al.  Understanding Non-Blocking Atomic Commitment , 1993 .

[9]  Ronald L. Rivest,et al.  Time-lock Puzzles and Timed-release Crypto , 1996 .

[10]  Sam Toueg,et al.  Unreliable failure detectors for reliable distributed systems , 1996, JACM.

[11]  Michael J. Franklin,et al.  Concurrency Control and Recovery , 2014, Encyclopedia of Database Systems.

[12]  N. Asokan,et al.  Asynchronous protocols for optimistic fair exchange , 1998, Proceedings. 1998 IEEE Symposium on Security and Privacy (Cat. No.98CB36186).

[13]  Nadarajah Asokan,et al.  Fairness in electronic commerce , 1998, Research report / RZ / IBM / IBM Research Division / Zürich Research Laboratory.

[14]  Paul F. Syverson,et al.  Weakly secret bit commitment: applications to lotteries and fair exchange , 1998, Proceedings. 11th IEEE Computer Security Foundations Workshop (Cat. No.98TB100238).

[15]  Matthew K. Franklin,et al.  Secure Group Barter: Multi-party Fair Exchange with Semi-Trusted Neutral Parties , 1998, Financial Cryptography.

[16]  Felix C. Freiling Specifications for Fault Tolerance: A Comedy of Failures , 1998 .

[17]  Henning Pagnia,et al.  On the Impossibility of Fair Exchange without a Trusted Third Party , 1999 .

[18]  Miguel Oom Temudo de Castro,et al.  Practical Byzantine fault tolerance , 1999, OSDI '99.

[19]  N. Asokan,et al.  Optimistic fair exchange of digital signatures , 1998, IEEE Journal on Selected Areas in Communications.

[20]  Moni Naor,et al.  Timed Commitments , 2000, CRYPTO.

[21]  Jan Camenisch,et al.  Optimistic Fair Secure Computation , 2000, CRYPTO.

[22]  Alfred Menezes,et al.  The Elliptic Curve Digital Signature Algorithm (ECDSA) , 2001, International Journal of Information Security.

[23]  John R. Douceur,et al.  The Sybil Attack , 2002, IPTPS.

[24]  Silvio Micali,et al.  Simple and fast optimistic protocols for fair electronic exchange , 2003, PODC '03.

[25]  Claus-Peter Schnorr,et al.  Efficient signature generation by smart cards , 2004, Journal of Cryptology.

[26]  Michael J. Fischer,et al.  Stabilizing Consensus in Mobile Networks , 2006, DCOSS.

[27]  S. Nakamoto,et al.  Bitcoin: A Peer-to-Peer Electronic Cash System , 2008 .

[28]  Thomas Chesney,et al.  Griefing in virtual worlds: causes, casualties and coping strategies , 2009, Inf. Syst. J..

[29]  Christopher Frost,et al.  Spanner: Google's Globally-Distributed Database , 2012, OSDI.

[30]  Alptekin Küpçü,et al.  Usable optimistic fair exchange , 2010, Comput. Networks.

[31]  Nir Bitansky,et al.  From extractable collision resistance to succinct non-interactive arguments of knowledge, and back again , 2012, ITCS '12.

[32]  Marina Blanton,et al.  Secure Multiparty Computation , 2011, Encyclopedia of Cryptography and Security.

[33]  Dario Fiore,et al.  Vector Commitments and Their Applications , 2013, Public Key Cryptography.

[34]  Pieter Wuille,et al.  Enabling Blockchain Innovations with Pegged Sidechains , 2014 .

[35]  Christian Decker,et al.  Bitcoin Transaction Malleability and MtGox , 2014, ESORICS.

[36]  Jeremy Rubin,et al.  Merkelized Abstract Syntax Trees , 2014 .

[37]  Iddo Bentov,et al.  How to Use Bitcoin to Design Fair Protocols , 2014, CRYPTO.

[38]  Daniel Davis Wood,et al.  ETHEREUM: A SECURE DECENTRALISED GENERALISED TRANSACTION LEDGER , 2014 .

[39]  Vitalik Buterin A NEXT GENERATION SMART CONTRACT & DECENTRALIZED APPLICATION PLATFORM , 2015 .

[40]  Joshua A. Kroll,et al.  Why buy when you can rent ? Bribery attacks on Bitcoin consensus , 2015 .

[41]  Marcin Andrychowicz,et al.  Multiparty Computation Protocols Based on Cryptocurrencies , 2015 .

[42]  Jeremy Clark,et al.  SoK: Research Perspectives and Challenges for Bitcoin and Cryptocurrencies , 2015, 2015 IEEE Symposium on Security and Privacy.

[43]  Marcus Peinado,et al.  Controlled-Channel Attacks: Deterministic Side Channels for Untrusted Operating Systems , 2015, 2015 IEEE Symposium on Security and Privacy.

[44]  Jeremy Clark,et al.  On Bitcoin as a public randomness source , 2015, IACR Cryptol. ePrint Arch..

[45]  Iddo Bentov,et al.  Amortizing Secure Computation with Penalties , 2016, CCS.

[46]  Abhi Shelat,et al.  Analysis of the Blockchain Protocol in Asynchronous Networks , 2017, EUROCRYPT.

[47]  Eli Ben-Sasson,et al.  Interactive Oracle Proofs , 2016, TCC.

[48]  Aviv Zohar,et al.  Optimal Selfish Mining Strategies in Bitcoin , 2015, Financial Cryptography.

[49]  Aggelos Kiayias,et al.  Ouroboros: A Provably Secure Proof-of-Stake Blockchain Protocol , 2017, CRYPTO.

[50]  Aggelos Kiayias,et al.  Fair and Robust Multi-party Computation Using a Global Transaction Ledger , 2016, EUROCRYPT.

[51]  Christian Decker,et al.  Bitcoin meets strong consistency , 2014, ICDCN.

[52]  Silvio Micali,et al.  ALGORAND: The Efficient and Democratic Ledger , 2016, ArXiv.

[53]  Arvind Narayanan,et al.  Threshold-Optimal DSA/ECDSA Signatures and an Application to Bitcoin Wallet Security , 2016, ACNS.

[54]  Bryan Ford,et al.  Managing Identities Using Blockchains and CoSi , 2016, PETS 2016.

[55]  Marta Piekarska,et al.  Strong Federations: An Interoperable Blockchain Solution to Centralized Third Party Risks , 2016, ArXiv.

[56]  Aviv Zohar,et al.  Bitcoin's Security Model Revisited , 2016, ArXiv.

[57]  Hubert Ritzdorf,et al.  On the Security and Performance of Proof of Work Blockchains , 2016, IACR Cryptol. ePrint Arch..

[58]  Marko Vukolic,et al.  Eventually Returning to Strong Consistency , 2016, IEEE Data Eng. Bull..

[59]  Stefan Thomas,et al.  A Protocol for Interledger Payments , 2016 .

[60]  Elaine Shi,et al.  Snow White: Provably Secure Proofs of Stake , 2016, IACR Cryptol. ePrint Arch..

[61]  Aggelos Kiayias,et al.  Proofs of Proofs of Work with Sublinear Complexity , 2016, Financial Cryptography Workshops.

[62]  Bryan Ford,et al.  Enhancing Bitcoin Security and Performance with Strong Consistency via Collective Signing , 2016, USENIX Security Symposium.

[63]  DR. Gavin Wood POLKADOT: VISION FOR A HETEROGENEOUS MULTI-CHAIN FRAMEWORK , 2016 .

[64]  Christian Cachin,et al.  Architecture of the Hyperledger Blockchain Fabric , 2016 .

[65]  R. Pass Hybrid Consensus : Scalable Permissionless Consensus , 2016 .

[66]  Edgar R. Weippl,et al.  Merged Mining: Curse or Cure? , 2017, DPM/CBT@ESORICS.

[67]  Johannes Götzfried,et al.  Cache Attacks on Intel SGX , 2017, EUROSEC.

[68]  D. Boneh,et al.  Bulletproofs : Efficient Range Proofs for Confidential Transactions , 2017 .

[69]  Michael J. Fischer,et al.  Scalable Bias-Resistant Distributed Randomness , 2017, 2017 IEEE Symposium on Security and Privacy (SP).

[70]  Joseph Bonneau,et al.  Proofs-of-delay and randomness beacons in Ethereum , 2017 .

[71]  Aggelos Kiayias,et al.  Ouroboros Praos: An adaptively-secure, semi-synchronous proof-of-stake protocol , 2017, IACR Cryptol. ePrint Arch..

[72]  Merged Mining: Analysis of Effects and Implications , 2017 .

[73]  Aggelos Kiayias,et al.  Non-Interactive Proofs of Proof-of-Work , 2020, IACR Cryptol. ePrint Arch..

[74]  Aggelos Kiayias,et al.  The Bitcoin Backbone Protocol with Chains of Variable Difficulty , 2017, CRYPTO.

[75]  Giulio Malavolta,et al.  Concurrency and Privacy with Payment-Channel Networks , 2017, IACR Cryptol. ePrint Arch..

[76]  Ethan Heilman,et al.  Atomically Trading with Roger: Gambling on the Success of a Hardfork , 2017, DPM/CBT@ESORICS.

[77]  Daniel Gruss,et al.  Strong and Efficient Cache Side-Channel Protection using Hardware Transactional Memory , 2017, USENIX Security Symposium.

[78]  Fan Zhang,et al.  Tesseract: Real-Time Cryptocurrency Exchange using Trusted Hardware , 2017, IACR Cryptol. ePrint Arch..

[79]  Marc Jansen,et al.  Revisiting Difficulty Control for Blockchain Systems , 2017, IACR Cryptol. ePrint Arch..

[80]  Ethan Heilman,et al.  TumbleBit: An Untrusted Bitcoin-Compatible Anonymous Payment Hub , 2017, NDSS.

[81]  Matthew Green,et al.  Bolt: Anonymous Payment Channels for Decentralized Currencies , 2017, CCS.

[82]  Stefan Dziembowski,et al.  FairSwap: How To Fairly Exchange Digital Goods , 2018, IACR Cryptol. ePrint Arch..

[83]  Andrew Miller,et al.  Pisa: Arbitration Outsourcing for State Channels , 2019, IACR Cryptol. ePrint Arch..

[84]  George Danezis,et al.  Chainspace: A Sharded Smart Contracts Platform , 2017, NDSS.

[85]  Sarah Meiklejohn,et al.  Smart contracts for bribing miners , 2018, IACR Cryptol. ePrint Arch..

[86]  Christof Fetzer,et al.  Varys: Protecting SGX Enclaves from Practical Side-Channel Attacks , 2018, USENIX Annual Technical Conference.

[87]  Enis Ceyhun Alp,et al.  C ALYPSO : Auditable Sharing of Private Data over Blockchains , 2018 .

[88]  Magnus Boman,et al.  The Scalability of Trustless Trust , 2018, Financial Cryptography Workshops.

[89]  Aggelos Kiayias,et al.  Ouroboros Praos: An Adaptively-Secure, Semi-synchronous Proof-of-Stake Blockchain , 2018, EUROCRYPT.

[90]  Angelo De Caro,et al.  Channels: Horizontal Scaling and Confidentiality on Permissioned Blockchains , 2018, ESORICS.

[91]  Andreas G. Veneris,et al.  Astraea: A Decentralized Blockchain Oracle , 2018, 2018 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData).

[92]  Roger Wattenhofer,et al.  Towards Secure and Efficient Payment Channels , 2018, ArXiv.

[93]  Stefan Tai,et al.  ZoKrates - Scalable Privacy-Preserving Off-Chain Computations , 2018, 2018 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData).

[94]  Ittai Abraham,et al.  Hot-Stuff the Linear, Optimal-Resilience, One-Message BFT Devil , 2018, ArXiv.

[95]  Emin Gün Sirer,et al.  Majority is not enough , 2013, Financial Cryptography.

[96]  Aggelos Kiayias,et al.  Stake-Bleeding Attacks on Proof-of-Stake Blockchains , 2018, 2018 Crypto Valley Conference on Blockchain Technology (CVCBT).

[97]  Eli Ben-Sasson,et al.  Scalable, transparent, and post-quantum secure computational integrity , 2018, IACR Cryptol. ePrint Arch..

[98]  Snowflake to Avalanche : A Novel Metastable Consensus Protocol Family for Cryptocurrencies Team Rocket , 2018 .

[99]  Dan Boneh,et al.  Batching Techniques for Accumulators with Applications to IOPs and Stateless Blockchains , 2019, IACR Cryptol. ePrint Arch..

[100]  Hubert Ritzdorf,et al.  TLS-N: Non-repudiation over TLS Enablign Ubiquitous Content Signing , 2018, NDSS.

[101]  Edgar R. Weippl,et al.  (Short Paper) A Wild Velvet Fork Appears! Inclusive Blockchain Protocol Changes in Practice , 2018, IACR Cryptol. ePrint Arch..

[102]  Ilya Sergey,et al.  Scilla: a Smart Contract Intermediate-Level LAnguage , 2018, ArXiv.

[103]  Aggelos Kiayias,et al.  Proof-of-Work Sidechains , 2019, IACR Cryptol. ePrint Arch..

[104]  Eleftherios Kokoris Kogias,et al.  CRYPTOGRAPHICALLY VERIFIABLE DATA STRUCTURE HAVING MULTI-HOP FORWARD AND BACKWARDS LINKS AND ASSOCIATED SYSTEMS AND METHODS , 2018 .

[105]  Mariana Raykova,et al.  RapidChain: A Fast Blockchain Protocol via Full Sharding , 2018, IACR Cryptol. ePrint Arch..

[106]  Edgar R. Weippl,et al.  HydRand: Practical Continuous Distributed Randomness , 2018, IACR Cryptol. ePrint Arch..

[107]  Giulio Malavolta,et al.  Multi-Hop Locks for Secure, Privacy-Preserving and Interoperable Payment-Channel Networks , 2018, IACR Cryptol. ePrint Arch..

[108]  Edgar R. Weippl,et al.  Echoes of the Past: Recovering Blockchain Metrics From Merged Mining , 2019, IACR Cryptol. ePrint Arch..

[109]  이승진,et al.  Bitcoin Lightning Network의 강건성에 대한 연구 , 2018 .

[110]  Vitalik Buterin,et al.  Fraud Proofs: Maximising Light Client Security and Scaling Blockchains with Dishonest Majorities , 2018, ArXiv.

[111]  Hong-Sheng Zhou,et al.  TwinsCoin: A Cryptocurrency via Proof-of-Work and Proof-of-Stake , 2018, BCC '18.

[112]  S. Matthew Weinberg,et al.  Arbitrum: Scalable, private smart contracts , 2018, USENIX Security Symposium.

[113]  Maurice Herlihy,et al.  Atomic Cross-Chain Swaps , 2018, PODC.

[114]  Julian Hosp,et al.  COMIT - Cryptographically-secure Off-chain Multi-asset Instant Transaction Network , 2018, ArXiv.

[115]  Dan Boneh,et al.  Verifiable Delay Functions , 2018, IACR Cryptol. ePrint Arch..

[116]  Philipp Jovanovic,et al.  OmniLedger: A Secure, Scale-Out, Decentralized Ledger via Sharding , 2018, 2018 IEEE Symposium on Security and Privacy (SP).

[117]  Jiangshan Yu,et al.  On the optionality and fairness of Atomic Swaps , 2019, IACR Cryptol. ePrint Arch..

[118]  Edgar R. Weippl,et al.  Pay-To-Win: Incentive Attacks on Proof-of-Work Cryptocurrencies , 2019, IACR Cryptol. ePrint Arch..

[119]  Alexei Zamyatin,et al.  XCLAIM: Trustless, Interoperable, Cryptocurrency-Backed Assets , 2019, 2019 IEEE Symposium on Security and Privacy (SP).

[120]  Liuba Shrira,et al.  Cross-chain deals and adversarial commerce , 2019, The VLDB Journal.

[121]  Eleftherios Kokoris-Kogias,et al.  Robust and Scalable Consensus for Sharded Distributed Ledgers , 2019, IACR Cryptol. ePrint Arch..

[122]  Mahdi H. Miraz,et al.  Atomic Cross-Chain Swaps: Development, Trajectory and Potential of Non-Monetary Digital Token Swap Facilities , 2019, SSRN Electronic Journal.

[123]  Pedro Moreno-Sanchez,et al.  SoK: Off The Chain Transactions , 2019, IACR Cryptol. ePrint Arch..

[124]  Roger Wattenhofer,et al.  Bitcoin Security under Temporary Dishonest Majority , 2019, Financial Cryptography.

[125]  Roger Wattenhofer,et al.  Brick: Asynchronous State Channels , 2019, ArXiv.

[126]  Pedro Moreno-Sanchez,et al.  A2L: Anonymous Atomic Locks for Scalability and Interoperability in Payment Channel Hubs , 2019, IACR Cryptol. ePrint Arch..

[127]  Roger Wattenhofer,et al.  Divide and Scale: Formalization of Distributed Ledger Sharding Protocols , 2019, ArXiv.

[128]  Giulio Malavolta,et al.  Anonymous Multi-Hop Locks for Blockchain Scalability and Interoperability , 2019, NDSS.

[129]  Jinwoo Shin,et al.  Bitcoin vs. Bitcoin Cash: Coexistence or Downfall of Bitcoin Cash? , 2019, 2019 IEEE Symposium on Security and Privacy (SP).

[130]  Majid Khabbazian,et al.  Outpost: A Responsive Lightweight Watchtower , 2019, IACR Cryptol. ePrint Arch..

[131]  Sandra Johnson,et al.  Sidechains and interoperability , 2019, ArXiv.

[132]  Mustafa Al-Bassam,et al.  LazyLedger: A Distributed Data Availability Ledger With Client-Side Smart Contracts , 2019, ArXiv.

[133]  Sarah Meiklejohn,et al.  Tracing Transactions Across Cryptocurrency Ledgers , 2018, USENIX Security Symposium.

[134]  Keisuke Tanaka,et al.  SoK: A Taxonomy for Layer-2 Scalability Related Protocols for Cryptocurrencies , 2019, IACR Cryptol. ePrint Arch..

[135]  Nicolas Gailly,et al.  Verifiable Management of Private Data under Byzantine Failures , 2019 .

[136]  Ittai Abraham,et al.  Bootstrapping Consensus Without Trusted Setup: Fully Asynchronous Distributed Key Generation , 2019, IACR Cryptol. ePrint Arch..

[137]  Dan Boneh,et al.  Retrofitting a two-way peg between blockchains , 2019, ArXiv.

[138]  Pramod Viswanath,et al.  Compounding of Wealth in Proof-of-Stake Cryptocurrencies , 2018, Financial Cryptography.

[139]  Pedro Moreno-Sanchez,et al.  DLSAG: Non-Interactive Refund Transactions For Interoperable Payment Channels in Monero , 2020, IACR Cryptol. ePrint Arch..

[140]  Bernhard Haslhofer,et al.  An Empirical Analysis of Monero Cross-Chain Traceability , 2018, ArXiv.

[141]  William J. Knottenbelt,et al.  Balance: Dynamic Adjustment of Cryptocurrency Deposits , 2019, IACR Cryptol. ePrint Arch..

[142]  Pedro Moreno-Sanchez,et al.  Atomic Multi-Channel Updates with Constant Collateral in Bitcoin-Compatible Payment-Channel Networks , 2019, IACR Cryptol. ePrint Arch..

[143]  Peng Gao,et al.  HyperService: Interoperability and Programmability Across Heterogeneous Blockchains , 2019, CCS.

[144]  Sreeram Kannan,et al.  Coded Merkle Tree: Solving Data Availability Attacks in Blockchains , 2019, IACR Cryptol. ePrint Arch..

[145]  Aggelos Kiayias,et al.  Proof-of-Burn , 2020, IACR Cryptol. ePrint Arch..

[146]  Bryan Ford,et al.  Rethinking General-Purpose Decentralized Computing , 2019, HotOS.

[147]  Jason Teutsch,et al.  On decentralized oracles for data availability , 2019, ArXiv.

[148]  Aggelos Kiayias,et al.  Proof-of-Stake Sidechains , 2019, 2019 IEEE Symposium on Security and Privacy (SP).

[149]  Nikos Fotiou,et al.  Interledger Smart Contracts for Decentralized Authorization to Constrained Things , 2019, IEEE INFOCOM 2019 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS).

[150]  Jason Teutsch,et al.  A scalable verification solution for blockchains , 2019, ArXiv.

[151]  Maurice Herlihy,et al.  Privacy-Preserving Cross-Chain Atomic Swaps , 2020, Financial Cryptography Workshops.

[152]  Divyakant Agrawal,et al.  Atomic commitment across blockchains , 2019, Proc. VLDB Endow..

[153]  Alfonso Cevallos,et al.  Overview of Polkadot and its Design Considerations , 2020, IACR Cryptol. ePrint Arch..

[154]  Loi Luu,et al.  FlyClient: Super-Light Clients for Cryptocurrencies , 2020, 2020 IEEE Symposium on Security and Privacy (SP).

[155]  Pedro Moreno-Sanchez,et al.  Generalized Bitcoin-Compatible Channels , 2020, IACR Cryptol. ePrint Arch..

[156]  Sai Krishna Deepak Maram,et al.  DECO: Liberating Web Data Using Decentralized Oracles for TLS , 2019, CCS.

[157]  Lei Fan,et al.  2-hop Blockchain: Combining Proof-of-Work and Proof-of-Stake Securely , 2020, ESORICS.

[158]  Roman Oliynykov,et al.  Zendoo: a zk-SNARK Verifiable Cross-Chain Transfer Protocol Enabling Decoupled and Decentralized Sidechains , 2020, 2020 IEEE 40th International Conference on Distributed Computing Systems (ICDCS).

[159]  Ethan Heilman,et al.  The Arwen Trading Protocols , 2020, Financial Cryptography.

[160]  George Danezis,et al.  Replay Attacks and Defenses Against Cross-shard Consensus in Sharded Distributed Ledgers , 2019, 2020 IEEE European Symposium on Security and Privacy (EuroS&P).

[161]  Joseph Bonneau,et al.  Coda: Decentralized Cryptocurrency at Scale , 2020, IACR Cryptol. ePrint Arch..

[162]  William J. Knottenbelt,et al.  TxChain: Efficient Cryptocurrency Light Clients via Contingent Transaction Aggregation , 2020, IACR Cryptol. ePrint Arch..

[163]  Peter Robinson,et al.  The merits of using Ethereum MainNet as a Coordination Blockchain for Ethereum Private Sidechains , 2019, The Knowledge Engineering Review.

[164]  Aggelos Kiayias,et al.  The velvet path to superlight blockchain clients , 2021, IACR Cryptol. ePrint Arch..

[165]  Jacob Eberhardt,et al.  zkRelay: Facilitating Sidechains using zkSNARK-based Chain-Relays , 2020, 2020 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW).

[166]  Alistair Stewart,et al.  GRANDPA: a Byzantine Finality Gadget , 2020, ArXiv.

[167]  Aggelos Kiayias,et al.  A Gas-Efficient Superlight Bitcoin Client in Solidity , 2020, IACR Cryptol. ePrint Arch..

[168]  Giulio Malavolta,et al.  Lockable Signatures for Blockchains: Scriptless Scripts for All Signatures , 2021, 2021 IEEE Symposium on Security and Privacy (SP).

[169]  Drivechains, Sidechains and Hybrid 2­way Peg Designs , 2022 .