Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals

[1]  Vinayak P. Dravid,et al.  The panoscopic approach to high performance thermoelectrics , 2014 .

[2]  V. Ozoliņš,et al.  Lone pair electrons minimize lattice thermal conductivity , 2013 .

[3]  Mildred S Dresselhaus,et al.  When thermoelectrics reached the nanoscale. , 2013, Nature nanotechnology.

[4]  Hao Li,et al.  High thermoelectric performance via hierarchical compositionally alloyed nanostructures. , 2013, Journal of the American Chemical Society.

[5]  M. Kanatzidis,et al.  High-performance bulk thermoelectrics with all-scale hierarchical architectures , 2012, Nature.

[6]  Timothy P. Hogan,et al.  Raising the thermoelectric performance of p-type PbS with endotaxial nanostructuring and valence-band offset engineering using CdS and ZnS. , 2012, Journal of the American Chemical Society.

[7]  Wei Liu,et al.  Convergence of conduction bands as a means of enhancing thermoelectric performance of n-type Mg2Si(1-x)Sn(x) solid solutions. , 2012, Physical review letters.

[8]  V. Ozoliņš,et al.  First-principles description of anomalously low lattice thermal conductivity in thermoelectric Cu-Sb-Se ternary semiconductors , 2012 .

[9]  Heng Wang,et al.  Convergence of electronic bands for high performance bulk thermoelectrics , 2011, Nature.

[10]  M. Kanatzidis,et al.  Strained endotaxial nanostructures with high thermoelectric figure of merit. , 2011, Nature chemistry.

[11]  T. Hanrath,et al.  SnSe nanocrystals: synthesis, structure, optical properties, and surface chemistry. , 2010, Journal of the American Chemical Society.

[12]  G. Kotliar,et al.  Peierls distortion as a route to high thermoelectric performance in In4Se3-δ crystals , 2009, Nature.

[13]  G. J. Snyder,et al.  Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States , 2008, Science.

[14]  D. Morelli,et al.  Intrinsically minimal thermal conductivity in cubic I-V-VI2 semiconductors. , 2008, Physical review letters.

[15]  G. J. Snyder,et al.  Complex thermoelectric materials. , 2008, Nature materials.

[16]  M. Dresselhaus,et al.  New Directions for Low‐Dimensional Thermoelectric Materials , 2007 .

[17]  G. J. Snyder,et al.  Yb14MnSb11: New High Efficiency Thermoelectric Material for Power Generation , 2006 .

[18]  S. Yamanaka,et al.  Ag9TlTe5: A high-performance thermoelectric bulk material with extremely low thermal conductivity , 2005 .

[19]  Donald T. Morelli,et al.  Thermopower enhancement in lead telluride nanostructures , 2004 .

[20]  M. Kanatzidis,et al.  Cubic AgPbmSbTe2+m: Bulk Thermoelectric Materials with High Figure of Merit , 2004, Science.

[21]  David R. Clarke,et al.  Materials selection guidelines for low thermal conductivity thermal barrier coatings , 2003 .

[22]  A. van de Walle,et al.  The Alloy Theoretic Automated Toolkit: A User Guide , 2002 .

[23]  B. Fultz,et al.  Transmission electron microscopy and diffractometry of materials , 2001 .

[24]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[25]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[26]  Mildred S. Dresselhaus,et al.  Effect of quantum-well structures on the thermoelectric figure of merit. , 1993, Physical review. B, Condensed matter.

[27]  Watson,et al.  Lower limit to the thermal conductivity of disordered crystals. , 1992, Physical review. B, Condensed matter.

[28]  Peters,et al.  High-pressure Mössbauer study of SnSe. , 1990, Physical review. B, Condensed matter.

[29]  J. Pannetier,et al.  Neutron diffraction study of the structural phase transition in SnS and SnSe , 1986 .

[30]  A. S. Yue,et al.  Growth and electronic properties of the SnSe semiconductor , 1981 .

[31]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[32]  J. Wasscher,et al.  Simple evaluation of the maximum thermoelectric figure of merit, with application to mixed crystals SnS1-xSex , 1963 .