State of charge estimation for electrical vehicle batteries

Lithium ion batteries play an increasingly important role as high-rate transient power sources for hybrid electric vehicles, cycling around a relatively fixed state of charge (SOC). A crucial step in enhancing the performance of these batteries is the estimation of the state of charge as a function of the load. Most of the existing literature supports an empirical model - based on either an electric circuit, arbitrary pole placement or an analytical expression with an arbitrary set of parameters. Such empirical do not provide information on the physical limitations. Alternatively, an electrochemical cell model incorporating transport, kinetic and thermodynamic limitations can be used to estimate parameters that hold physical significance and hence provide a better insight into the cell performance. Estimating the SOC of a battery using physics-based models and filtering algorithms is illustrated. The relative merits and disadvantages of the approach are evaluated.

[1]  C. Fennie,et al.  Fuzzy logic modelling of state-of-charge and available capacity of nickel/metal hydride batteries , 2004 .

[2]  A. Shukla,et al.  On-line monitoring of lead-acid batteries by galvanostatic non-destructive technique , 2004 .

[3]  M. Verbrugge,et al.  Adaptive state of charge algorithm for nickel metal hydride batteries including hysteresis phenomena , 2004 .

[4]  Ralph E. White,et al.  Analysis of capacity fade in a lithium ion battery , 2005 .

[5]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[6]  Ralph E. White,et al.  Review of Models for Predicting the Cycling Performance of Lithium Ion Batteries , 2006 .

[7]  Ralph E. White,et al.  Development of First Principles Capacity Fade Model for Li-Ion Cells , 2004 .

[8]  Gregory L. Plett,et al.  Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 2. Modeling and identification , 2004 .

[9]  Gregory L. Plett,et al.  Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs Part 1. Background , 2004 .

[10]  Eberhard Meissner,et al.  Battery Monitoring and Electrical Energy Management , 2003 .

[11]  Gregory L. Plett,et al.  Sigma-point Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 1: Introduction and state estimation , 2006 .

[12]  Yonathan Bard,et al.  Nonlinear parameter estimation , 1974 .

[13]  Terry Hansen,et al.  Support vector based battery state of charge estimator , 2005 .

[14]  Dale E. Seborg,et al.  Nonlinear Process Control , 1996 .

[15]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[16]  R. Tenno,et al.  Evaluation of VRLA battery under overcharging: model for battery testing , 2002 .

[17]  E. Karden,et al.  Dynamic modelling of lead/acid batteries using impedance spectroscopy for parameter identification , 1997 .

[18]  J. Junkins,et al.  Optimal Estimation of Dynamic Systems , 2004 .

[19]  Rik W. De Doncker,et al.  Impedance measurements on lead–acid batteries for state-of-charge, state-of-health and cranking capability prognosis in electric and hybrid electric vehicles , 2005 .

[20]  Karen E. Thomas,et al.  Mathematical Modeling of Lithium Batteries , 2002 .

[21]  Ralph E. White,et al.  Determination of the hydrogen diffusion coefficient in metal hydrides by impedance spectroscopy , 1998 .

[22]  P. Blanchard,et al.  Application of electrochemical noise analysis to the study of batteries: state-of-charge determination and overcharge detection , 1999 .

[23]  Yakup Ozkazanc,et al.  Microcontroller-based on-line state-of-charge estimator for sealed lead-acid batteries , 2004 .

[24]  J. Kerr Advances in lithium-ion batteries , 2003 .

[25]  Navid Mostoufi,et al.  Numerical Methods for Chemical Engineers with MATLAB Applications with Cdrom , 1999 .

[26]  A. Hammouche,et al.  Monitoring state-of-charge of Ni–MH and Ni–Cd batteries using impedance spectroscopy , 2004 .

[27]  Chaoyang Wang,et al.  Micro‐Macroscopic Coupled Modeling of Batteries and Fuel Cells I. Model Development , 1998 .

[28]  P. Willmann,et al.  A contact-less method to evaluate the state of charge of nickel batteries using Foucault's eddy currents , 2003 .

[29]  B. Scrosati,et al.  Advances in lithium-ion batteries , 2002 .

[30]  M. Verbrugge,et al.  Electrochemical and Thermal Characterization of Battery Modules Commensurate with Electric Vehicle Integration , 2002 .

[31]  Mark W. Verbrugge,et al.  Generalized Recursive Algorithm for Adaptive Multiparameter Regression Application to Lead Acid, Nickel Metal Hydride, and Lithium-Ion Batteries , 2006 .

[32]  R. Tenno,et al.  Charge–discharge behaviour of VRLA batteries: model calibration and application for state estimation and failure detection , 2001 .

[33]  Andreas Jossen,et al.  Methods for state-of-charge determination and their applications , 2001 .

[34]  Tony Markel,et al.  ADVISOR: A SYSTEMS ANALYSIS TOOL FOR ADVANCED VEHICLE MODELING , 2002 .

[35]  A. Salkind,et al.  Determination of state-of-charge and state-of-health of batteries by fuzzy logic methodology , 1999 .

[36]  T. Brubaker,et al.  Nonlinear Parameter Estimation , 1979 .