Fossil shell emission in dying radio loud AGNs

We investigate shell emission associated with dying radio loud AGNs. First, based on our recent work by Ito et al. (2015), we describe the dynamical and spectral evolution of shells after stopping the jet energy injection. We find that the shell emission overwhelms that of the radio lobes soon after stopping the jet energy injection because fresh electrons are continuously supplied into the shell via the forward shock, while the radio lobes rapidly fade out without jet energy injection. We find that such fossil shells can be a new class of target sources for SKA telescope. Next, we apply the model to the nearby radio source 3C84. Then, we find that the fossil shell emission in 3C84 is less luminous in the radio band while it is bright in the TeV γ -ray band and can be detectable by CTA. (© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

[1]  Y. Fujita,et al.  AGN jet power and feedback controlled by Bondi accretion in brightest cluster galaxies , 2014 .

[2]  R. Itoh,et al.  X-Ray and Optical Monitoring of a Gamma-Ray-Emitting Radio Galaxy, NGC 1275 , 2013 .

[3]  M. Kino,et al.  NEW CLASS OF VERY HIGH ENERGY γ-RAY EMITTERS: RADIO-DARK MINI SHELLS SURROUNDING ACTIVE GALACTIC NUCLEUS JETS , 2013, 1302.0106.

[4]  G. Calderone,et al.  The Wide-field Infrared Survey Explorer view of the disc-torus connection in z ∼ 0.6 active galactic nuclei , 2012 .

[5]  M. Kino,et al.  VLBI and Single Dish Monitoring of 3C84 in the Period of 2009-2011 , 2012, 1204.1392.

[6]  M. Kino,et al.  EXPLORING THE CENTRAL SUB-PARSEC REGION OF THE γ-RAY BRIGHT RADIO GALAXY 3C 84 WITH VLBA AT 43 GHz IN THE PERIOD OF 2002–2008 , 2012 .

[7]  M. Kino,et al.  EVOLUTION OF NON-THERMAL SHELL EMISSION ASSOCIATED WITH ACTIVE GALACTIC NUCLEUS JETS , 2011 .

[8]  M. Kino,et al.  VLBI Monitoring of 3C 84 (NGC 1275) in Early Phase of the 2005 Outburst , 2010, 1001.3852.

[9]  M. Kino,et al.  ON THE ORIGIN OF FANAROFF–RILEY CLASSIFICATION OF RADIO GALAXIES: DECELERATION OF SUPERSONIC RADIO LOBES , 2009, 0904.4752.

[10]  Robert P. Johnson,et al.  FERMI DISCOVERY OF GAMMA-RAY EMISSION FROM NGC 1275 , 2009, 0904.1904.

[11]  W. Harris,et al.  High-energy particle acceleration at the radio-lobe shock of Centaurus A , 2009, 0901.1346.

[12]  U. Padova,et al.  Extragalactic optical-infrared background radiation, its time evolution and the cosmic photon-photon opacity , 2008, 0805.1841.

[13]  J. Brinkmann,et al.  Probing the Evolution of Infrared Properties of z ∼ 6 Quasars: Spitzer Observations , 2006, astro-ph/0608006.

[14]  S. Allen,et al.  Magnetic fields in the centre of the Perseus cluster , 2006, astro-ph/0602622.

[15]  C. Crawford,et al.  A very deep Chandra observation of the Perseus cluster: shocks, ripples and conduction , 2005, astro-ph/0510476.

[16]  L. Ho,et al.  ESTIMATING BLACK HOLE MASSES IN ACTIVE GALAXIES USING THE H α EMISSION LINE , 2005 .

[17]  Are radio galaxies and quiescent galaxies different? Results from the analysis of HST brightness profiles , 2005, astro-ph/0505366.

[18]  M. Cohen,et al.  MOJAVE: MONITORING OF JETS IN ACTIVE GALACTIC NUCLEI WITH VLBA EXPERIMENTS. XI. SPECTRAL DISTRIBUTIONS , 2014, 1404.0014.

[19]  V. Dhawan,et al.  VLBA Absorption Imaging of Ionized Gas Associated with the Accretion Disk in NGC 1275 , 1999, astro-ph/9909365.

[20]  L. Ho,et al.  A Search for “Dwarf” Seyfert Nuclei. IV. Nuclei with Broad Hα Emission , 1997, astro-ph/9704099.

[21]  M. S. Oey,et al.  Atlas of quasar energy distributions , 1994 .

[22]  C. Carilli,et al.  Discovery of the bow shock of Cygnus A , 1988 .

[23]  Martin J. Rees,et al.  Theory of extragalactic radio sources , 1984 .

[24]  C. O’Dea,et al.  The 20 year spectral evolution of the radio nucleus of NGC 1275 , 1984 .