Local Data Models for Probabilistic Transfer Function Design

A central component of expressive volume rendering is the identification of tissue or material types and their respective boundaries. To perform appropriate data classification, transfer functions can be defined in highdimensional histograms, removing restrictions of purely 1D scalar value classification. The presented work aims at alleviating the problems of interactive multi-dimensional transfer function design by coupling high-dimensional, probabilistic, data-centric segmentation with interaction in the natural 3D space of the volume. We fit variable Gaussian Mixture Models to user specified subsets of the data set, yielding a probabilistic data model of the identified material type and its sources. The resulting classification allows for efficient transfer function design and multi-material volume rendering as demonstrated in several benchmark data sets.

[1]  Kai Bürger,et al.  Direct Volume Editing , 2008, IEEE Transactions on Visualization and Computer Graphics.

[2]  Anders Ynnerman,et al.  Local Histograms for Design of Transfer Functions in Direct Volume Rendering , 2006, IEEE Transactions on Visualization and Computer Graphics.

[3]  Joe Michael Kniss,et al.  Statistically quantitative volume visualization , 2005, VIS 05. IEEE Visualization, 2005..

[4]  Joe Michael Kniss,et al.  Multidimensional Transfer Functions for Interactive Volume Rendering , 2002, IEEE Trans. Vis. Comput. Graph..

[5]  Valerio Pascucci,et al.  The contour spectrum , 1997, Proceedings. Visualization '97 (Cat. No. 97CB36155).

[6]  Stefan Bruckner,et al.  Volume visualization based on statistical transfer-function spaces , 2010, 2010 IEEE Pacific Visualization Symposium (PacificVis).

[7]  Uncertainty-Aware Guided Volume Segmentation , 2010, IEEE Transactions on Visualization and Computer Graphics.

[8]  Wei Chen,et al.  Volume exploration using ellipsoidal Gaussian transfer functions , 2010, 2010 IEEE Pacific Visualization Symposium (PacificVis).

[9]  Ming-Yuen Chan,et al.  Relation-Aware Volume Exploration Pipeline , 2008, IEEE Transactions on Visualization and Computer Graphics.

[10]  Gordon L. Kindlmann,et al.  Semi-Automatic Generation of Transfer Functions for Direct Volume Rendering , 1998, VVS.

[11]  Carl-Fredrik Westin,et al.  Tissue Classification Based on 3D Local Intensity Structures for Volume Rendering , 2000, IEEE Trans. Vis. Comput. Graph..

[12]  Marc Levoy,et al.  Display of surfaces from volume data , 1988, IEEE Computer Graphics and Applications.

[13]  Bernhard Preim,et al.  Visualization in Medicine: Theory, Algorithms, and Applications , 2007 .

[14]  Jian Zhang,et al.  Automating Transfer Function Design with Valley Cell‐Based Clustering of 2D Density Plots , 2012, Comput. Graph. Forum.

[15]  Joseph JáJá,et al.  Hierarchical Exploration of Volumes Using Multilevel Segmentation of the Intensity-Gradient Histograms , 2012, IEEE Transactions on Visualization and Computer Graphics.

[16]  Kwan-Liu Ma,et al.  An intelligent system approach to higher-dimensional classification of volume data , 2005, IEEE Transactions on Visualization and Computer Graphics.

[17]  Matthew P. Wand,et al.  Kernel Smoothing , 1995 .

[18]  Marc Levoy,et al.  Display of surfaces from volume data , 1988, IEEE Computer Graphics and Applications.

[19]  G. Pflug Kernel Smoothing. Monographs on Statistics and Applied Probability - M. P. Wand; M. C. Jones. , 1996 .

[20]  Paul A. Beardsley,et al.  Design galleries: a general approach to setting parameters for computer graphics and animation , 1997, SIGGRAPH.

[21]  David S. Ebert,et al.  Structuring Feature Space: A Non-Parametric Method for Volumetric Transfer Function Generation , 2009, IEEE Transactions on Visualization and Computer Graphics.

[22]  Yingcai Wu,et al.  Interactive Transfer Function Design Based on Editing Direct Volume Rendered Images , 2007, IEEE Transactions on Visualization and Computer Graphics.

[23]  Martin Kraus,et al.  High-quality pre-integrated volume rendering using hardware-accelerated pixel shading , 2001, HWWS '01.

[24]  Larry S. Davis,et al.  Density Estimation Using Mixtures of Mixtures of Gaussians , 2006, ECCV.

[25]  Stefan Bruckner,et al.  Eurographics/ Ieee-vgtc Symposium on Visualization 2010 Isosurface Similarity Maps , 2022 .

[26]  G. Kindlmann,et al.  Semi-automatic generation of transfer functions for direct volume rendering , 1998, IEEE Symposium on Volume Visualization (Cat. No.989EX300).

[27]  Jian Zhang,et al.  Efficient Volume Exploration Using the Gaussian Mixture Model. , 2011, IEEE transactions on visualization and computer graphics.

[28]  Ben J. A. Kröse,et al.  Efficient Greedy Learning of Gaussian Mixture Models , 2003, Neural Computation.

[29]  Susan A. Murphy,et al.  Monographs on statistics and applied probability , 1990 .

[30]  Joe Michael Kniss,et al.  Gaussian transfer functions for multi-field volume visualization , 2003, IEEE Visualization, 2003. VIS 2003..

[31]  Xiaoru Yuan,et al.  WYSIWYG (What You See is What You Get) Volume Visualization , 2011, IEEE Transactions on Visualization and Computer Graphics.

[32]  Kwan-Liu Ma,et al.  A cluster-space visual interface for arbitrary dimensional classification of volume data , 2004, VISSYM'04.