A frequency-approximated approach to Kirchhoff migration

The integral solution of the wave equation has long been one of the most popular methods for imaging Kirchhoff migration and inverting Kirchhoff inversion seismic data. For efficiency, thisprocessiscommonlyformulatedasatime-domainoperation on each trace, applying antialiasing through high-cut filtering of the operator or pre-/postmigration dip filtering. Migration in the time domain, however, does not allow for velocity dispersion; standard antialiasing methods assume a flat reflector and tend to overfilter the data. We have recast the Kirchhoff integral in the frequencydomain,enablingrobustantialiasfilteringthroughappropriate dip limiting of each frequency and implicit accommodationoftruedispersion.Fullfrequencydecompositionoftheinput seismogram can be approximated by band-pass filtering or correlationwithband-limitedsourcesweepsforChirp/Vibroseis data into a few narrow-band traces that cumulatively retain the full source bandwidth. From prior knowledge of the source waveform, we have defined suitable bandwidths to describe broadband 3.0 octaves data using just six frequency bands. Kirchhoff migration of these narrow-band traces using coefficients determined at their central frequencies significantly improvesthepreservationofhigherfrequenciesandcancellationof steeplydippingaliasedenergyovertraditionaltime-domainantialiasingmethods.If,however,twobandsperoctaveceasetobea robust approach, our frequency-approximated approach providestheprocessorwithultimatecontroloverthefrequencydecimation, balancing increased resolution afforded by more bands against computing cost, whereas the number of frequency bands is few enough to permit detailed control over frequency-dependentantialiasfilteringparameters.

[1]  Öz Yilmaz,et al.  Seismic data processing , 1987 .

[2]  V. Bardan,et al.  Trace interpolation in seismic data processing , 1987 .

[3]  Fred Hilterman,et al.  THREE-DIMENSIONAL SEISMIC MODELING+ , 1970 .

[4]  Martin Tygel,et al.  Three-dimensional true-amplitude zero-offset migration , 1991 .

[5]  Justin K. Dix,et al.  Decimeter-resolution 3D seismic volume in shallow water: A case study in small-object detection , 2008 .

[6]  Samuel H. Gray,et al.  From the Hagedoorn imaging technique to Kirchhoff migration and inversion , 2001 .

[7]  Paul Docherty,et al.  A brief comparison of some Kirchhoff integral formulas for migration and inversion , 1991 .

[8]  John R. Berryhill,et al.  DIFFRACTION RESPONSE FOR NONZERO SEPARATION OF SOURCE AND RECEIVER , 1977 .

[9]  Fred Hilterman,et al.  AMPLITUDES OF SEISMIC WAVES—A QUICK LOOK , 1975 .

[10]  Norman Bleistein Hagedoorn told us how to do Kirchhoff migration and inversion , 1999 .

[11]  P. Hubral TIME MIGRATION—SOME RAY THEORETICAL ASPECTS* , 1977 .

[12]  Jack K. Cohen,et al.  Mathematics of Multidimensional Seismic Imaging, Migration, and Inversion , 2001 .

[13]  William A. Schneider,et al.  INTEGRAL FORMULATION FOR MIGRATION IN TWO AND THREE DIMENSIONS , 1978 .

[14]  A. W. Trorey A SIMPLE THEORY FOR SEISMIC DIFFRACTIONS , 1970 .

[15]  Biondo Biondi,et al.  Kirchhoff imaging beyond aliasing , 2001 .

[16]  Samuel H. Gray,et al.  True-amplitude seismic migration: A comparison of three approaches , 1997 .

[17]  Timothy G. Leighton,et al.  Chirp sub-bottom profiler source signature design and field testing , 2002 .

[18]  Eric Forgues,et al.  High resolution velocity model estimation from refraction and reflection data: 68th Ann , 1998 .

[19]  Ray Abma,et al.  Antialiasing methods in Kirchhoff migration , 1999 .

[20]  E. Baysal,et al.  Reverse time migration , 1983 .

[21]  Timothy G. Leighton,et al.  Design of a 3D Chirp Sub-bottom Imaging System , 2005 .

[22]  N. Bleistein On the imaging of reflectors in the earth , 1987 .

[23]  R. Pratt,et al.  The application of diffraction tomography to cross-hole seismic data , 1988 .

[24]  Jon F. Claerbout,et al.  DOWNWARD CONTINUATION OF MOVEOUT‐CORRECTED SEISMOGRAMS , 1972 .

[25]  G. McMechan,et al.  Multifrequency viscoacoustic modeling and inversion , 1996 .

[26]  R. Gerhard Pratt,et al.  Efficient waveform inversion and imaging: A strategy for selecting temporal frequencies , 2004 .

[27]  M. Buckingham Wave propagation, stress relaxation, and grain-to-grain shearing in saturated, unconsolidated marine sediments , 2000 .

[28]  Samuel H. Gray FREQUENCY‐SELECTIVE DESIGN OF THE KIRCHHOFF MIGRATION OPERATOR1 , 1992 .

[29]  Martin Tygel,et al.  Seismic True-Amplitude Imaging , 2007 .

[30]  J. Hudson,et al.  A geometrical approach to the elastic complex screen , 1998 .

[31]  J. Hagedoorn,et al.  A process of seismic reflection interpretation , 1954 .