Fast Dissolving Curcumin Cocrystals

Curcumin is the principal curcuminoid of the popular Indian spice turmeric. Despite the diverse pharmacological activities of this bioactive phenol, its application as a drug is severely limited by poor aqueous solubility. We report novel cocrystals of curcumin (1) with resorcinol and pyrogallol obtained by liquid-assisted grinding. Curcumin–resorcinol (1a) (1:1) and curcumin–pyrogallol (1b) (1:1) were characterized by X-ray diffraction, thermal analysis, FT-IR, FT-Raman, and solid-state 13C NMR spectroscopy. The 1:1 cocrystal stoichiometry is sustained by O–H···O hydrogen bonds between the phenolic OH groups of the coformers to the carbonyl group of curcumin. The melting point of the cocrystals is in between that of curcumin and the coformer and the lower melting cocrystal 1b is more soluble than higher melting 1a. The dissolution rates of curcumin–resorcinol (1a) and curcumin–pyrogallol (1b) in 40% EtOH–water are ∼5 and ∼12 times faster than that for curcumin.

[1]  S. Bourne,et al.  New polymorphs of isonicotinamide and nicotinamide. , 2011, Chemical communications.

[2]  K. Balasubramanian Molecular orbital basis for yellow curry spice curcumin's prevention of Alzheimer's disease. , 2006, Journal of agricultural and food chemistry.

[3]  Abu T M Serajuddin,et al.  Trends in solubility of polymorphs. , 2005, Journal of pharmaceutical sciences.

[4]  J. Crison,et al.  A Theoretical Basis for a Biopharmaceutic Drug Classification: The Correlation of in Vitro Drug Product Dissolution and in Vivo Bioavailability , 1995, Pharmaceutical Research.

[5]  N. Sugimoto,et al.  Synthesis of water-soluble porphyrin and the corresponding highly planar benzoporphyrin without meso-substituents , 2005 .

[6]  Jen-kun Lin,et al.  Stability of curcumin in buffer solutions and characterization of its degradation products. , 1997, Journal of pharmaceutical and biomedical analysis.

[7]  William Jones,et al.  Solvent-drop grinding: green polymorph control of cocrystallisation. , 2004, Chemical communications.

[8]  B. Stuart Infrared Spectroscopy , 2004, Analytical Techniques in Forensic Science.

[9]  Tejender S. Thakur,et al.  Co-Crystals of the Anti-HIV Drugs Lamivudine and Zidovudine , 2009 .

[10]  P. Matousek,et al.  Characterization of New Cocrystals by Raman Spectroscopy, Powder X-ray Diffraction, Differential Scanning Calorimetry, and Transmission Raman Spectroscopy , 2010 .

[11]  R. Planalp,et al.  Curcumin: From ancient medicine to current clinical trials , 2008, Cellular and Molecular Life Sciences.

[12]  Matthew L Peterson,et al.  Celecoxib:nicotinamide dissociation: using excipients to capture the cocrystal's potential. , 2007, Molecular pharmaceutics.

[13]  Hurng-Wern Huang,et al.  Pyrogallol induces G2-M arrest in human lung cancer cells and inhibits tumor growth in an animal model. , 2009, Lung cancer.

[14]  N. Schultheiss,et al.  Improving the Poor Aqueous Solubility of Nutraceutical Compound Pterostilbene through Cocrystal Formation , 2011 .

[15]  Ashwini Nangia,et al.  Solubility Advantage of Amorphous Drugs and Pharmaceutical Cocrystals , 2011 .

[16]  Orn Almarsson,et al.  Crystal engineering of novel cocrystals of a triazole drug with 1,4-dicarboxylic acids. , 2003, Journal of the American Chemical Society.

[17]  Daniel Normolle,et al.  Dose escalation of a curcuminoid formulation , 2006, BMC complementary and alternative medicine.

[18]  I. Kola,et al.  Can the pharmaceutical industry reduce attrition rates? , 2004, Nature Reviews Drug Discovery.

[19]  Peddy Vishweshwar,et al.  Pharmaceutical co-crystals. , 2006, Journal of pharmaceutical sciences.

[20]  L. Fábián,et al.  New solid forms of artemisinin obtained through cocrystallisation , 2010 .

[21]  G. P. Stahly,et al.  A Survey of Cocrystals Reported Prior to 2000 , 2009 .

[22]  Robert A Newman,et al.  Bioavailability of curcumin: problems and promises. , 2007, Molecular pharmaceutics.

[23]  Aeri Park,et al.  Use of a Glutaric Acid Cocrystal to Improve Oral Bioavailability of a Low Solubility API , 2006, Pharmaceutical Research.

[24]  W. Jordan,et al.  Curcumin--a natural herb with anti-HIV activity. , 1996, Journal of the National Medical Association.

[25]  P. Russo,et al.  A novel solubility-enhanced curcumin formulation showing stability and maintenance of anticancer activity. , 2011, Journal of pharmaceutical sciences.

[26]  N. Schultheiss,et al.  Nutraceutical cocrystals: utilizing pterostilbene as a cocrystal former , 2010 .

[27]  S. Byrn Solid state chemistry of drugs , 1982 .

[28]  Sheng Jiang,et al.  Pyrogallol-based molecules as potent inhibitors of the antiapoptotic Bcl-2 proteins. , 2007, Journal of medicinal chemistry.

[29]  R. M. Fisher,et al.  An accurate reappraisal of the elemental form factors and charge density of copper , 1990 .

[30]  M. Dinger,et al.  Extended Structures Built on a Triphenoxymethane Platform − C3‐Symmetric, Conformational Mimics of Calix[n]arenes , 2000 .

[31]  A. Shah,et al.  Toxicity studies on Alpinia galanga and Curcuma longa. , 1992, Planta medica.

[32]  G. Kuttan,et al.  Anti-tumour and antioxidant activity of natural curcuminoids. , 1995, Cancer letters.

[33]  B. Moulton,et al.  Supramolecular medicinal chemistry: mixed-ligand coordination complexes. , 2007, Molecular pharmaceutics.

[34]  G. Mahady,et al.  Turmeric (Curcuma longa) and curcumin inhibit the growth of Helicobacter pylori, a group 1 carcinogen. , 2002, Anticancer research.

[35]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[36]  Pui Shan Chow,et al.  Trimorphs of a pharmaceutical cocrystal involving two active pharmaceutical ingredients: potential relevance to combination drugs , 2009 .

[37]  Anthony L. Spek,et al.  Journal of , 1993 .

[38]  Tejender S. Thakur,et al.  Polymorphs, Pseudopolymorphs, and Co-Crystals of Orcinol: Exploring the Structural Landscape with High Throughput Crystallography , 2011 .

[39]  A. Newman,et al.  Pharmaceutical Cocrystals and Their Physicochemical Properties , 2009, Crystal growth & design.

[40]  Ranjit Thakuria,et al.  Highly soluble olanzapinium maleate crystalline salts , 2011 .

[41]  Raymond E. Davis,et al.  Patterns in Hydrogen Bonding: Functionality and Graph Set Analysis in Crystals , 1995 .

[42]  F. Vogt,et al.  Solid-State NMR Analysis of Organic Cocrystals and Complexes , 2009 .

[43]  S. Byrn,et al.  Solid-state nuclear magnetic resonance spectroscopy--pharmaceutical applications. , 2003, Journal of pharmaceutical sciences.

[44]  Bruno C. Hancock,et al.  What is the True Solubility Advantage for Amorphous Pharmaceuticals? , 2000, Pharmaceutical Research.

[45]  A. Bak,et al.  Drug Substance and Former Structure Property Relationships in 15 Diverse Pharmaceutical Co-Crystals , 2009 .

[46]  Sreenu Bhanoth,et al.  New polymorphs of curcumin. , 2011, Chemical communications.

[47]  Paolo Righi,et al.  Crystal forms of rifaximin and their effect on pharmaceutical properties , 2008 .

[48]  V. Dixit,et al.  Bioavailability enhancement of curcumin by complexation with phosphatidyl choline. , 2011, Journal of pharmaceutical sciences.

[49]  Na Sun,et al.  Dissolution rate and apparent solubility of poorly soluble drugs in biorelevant dissolution media. , 2010, Molecular pharmaceutics.

[50]  F. Krebs,et al.  Crystal structures of 2,3,6,7,10,11-oxytriphenylenes. Implications for columnar discotic mesophases , 2000 .

[51]  M. Otsuka,et al.  Physicochemical Properties of Nitrofuratoin Anhydrate and Monohydrate and Their Dissolution , 1991 .

[52]  S. Yalkowsky Techniques of solubilization of drugs , 1981 .

[53]  A. Glomme,et al.  Comparison of a miniaturized shake-flask solubility method with automated potentiometric acid/base titrations and calculated solubilities. , 2005, Journal of pharmaceutical sciences.

[54]  T. Osawa,et al.  Involvement of the beta-diketone moiety in the antioxidative mechanism of tetrahydrocurcumin. , 1996, Biochemical pharmacology.

[55]  Richard J. Gildea,et al.  OLEX2: a complete structure solution, refinement and analysis program , 2009 .