Reactions between basalt and CO2-rich seawater at 250 and 350°C, 500bars: Implications for the CO2 sequestration into the modern oceanic crust and the composition of hydrothermal vent fluid in the CO2-rich early ocean

[1]  J. Charlou,et al.  Compared geochemical signatures and the evolution of Menez Gwen (37°50′N) and Lucky Strike (37°17′N) hydrothermal fluids, south of the Azores Triple Junction on the Mid-Atlantic Ridge , 2000 .

[2]  R. Rosenbauer,et al.  Carbon sequestration via reaction with basaltic rocks: Geochemical modeling and experimental results , 2012 .

[3]  Taro Takahashi,et al.  Carbon dioxide sequestration in deep-sea basalt , 2008, Proceedings of the National Academy of Sciences.

[4]  Yumiko Watanabe,et al.  Evidence from massive siderite beds for a CO2-rich atmosphere before ~ 1.8 billion years ago , 2004, Nature.

[5]  Y. Watanabe,et al.  Field occurrence, geochemistry and petrogenesis of the Archean Mid-Oceanic Ridge Basalts (AMORBs) of the Cleaverville area, Pilbara Craton, Western Australia , 1996 .

[6]  Atul K. Jain,et al.  Stability: Energy for a Greenhouse Planet Advanced Technology Paths to Global Climate , 2008 .

[7]  J. Alt,et al.  Hydrothermal alteration of a 1 km section through the upper oceanic crust, Deep Sea Drilling Project Hole 504B: Mineralogy, chemistry and evolution of seawater‐basalt interactions , 1986 .

[8]  W. Bloh,et al.  The fate of Earth’s ocean , 2001 .

[9]  H. Helgeson,et al.  Thermodynamics of hydrothermal systems at elevated temperatures and pressures , 1969 .

[10]  Klaus S. Lackner,et al.  A Guide to CO2 Sequestration , 2003, Science.

[11]  L. Elkins‐Tanton Linked magma ocean solidification and atmospheric growth for Earth and Mars , 2008 .

[12]  E. Oelkers,et al.  The rainbow vent fluids (36°14′N, MAR): the influence of ultramafic rocks and phase separation on trace metal content in Mid-Atlantic Ridge hydrothermal fluids , 2002 .

[13]  E. Delong,et al.  The Subseafloor Biosphere at Mid-Ocean Ridges , 2004 .

[14]  B. Ménez,et al.  Life in the hydrated suboceanic mantle , 2012 .

[15]  A. Hofmann,et al.  Diagenetic Fe-carbonates in Paleoarchean felsic sedimentary rocks (Hooggenoeg Formation, Barberton greenstone belt, South Africa): Implications for CO2 sequestration and the chemical budget of seawater , 2009 .

[16]  Dana R. Yoerger,et al.  A Serpentinite-Hosted Ecosystem: The Lost City Hydrothermal Field , 2005, Science.

[17]  David L. Williams,et al.  Submarine Thermal Springs on the Gal�pagos Rift , 1979, Science.

[18]  N. Sleep,et al.  Carbon dioxide cycling and implications for climate on ancient Earth , 2001 .

[19]  C. Devey,et al.  Emerging Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges , 2013 .

[20]  D. Goldberg,et al.  Evaluation of ocean crustal Sites 1256 and 504 for long‐term CO2 sequestration , 2011 .

[21]  E. Oelkers,et al.  SUPCRT92: a software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bar and 0 to 1000 ° C , 1992 .

[22]  T. Shibuya,et al.  Middle Archean ocean ridge hydrothermal metamorphism and alteration recorded in the Cleaverville area, Pilbara Craton, Western Australia , 2007 .

[23]  Ken Takai,et al.  Highly alkaline, high-temperature hydrothermal fluids in the early Archean ocean , 2010 .

[24]  J. Baross,et al.  An Hypothesis Concerning the Relationships Between Submarine Hot Springs and the Origin of Life on Earth , 1981 .

[25]  Carla M. Koretsky,et al.  Metal-organic complexes in geochemical processes: Estimation of standard partial molal thermodynamic properties of aqueous complexes between metal cations and monovalent organic acid ligands at high pressures and temperatures , 1995 .

[26]  M. Russell,et al.  Hydrothermal and oceanic pH conditions of possible relevance to the origin of life , 1994, Origins of life and evolution of the biosphere.

[27]  Sam Holloway,et al.  STORAGE OF FOSSIL FUEL-DERIVED CARBON DIOXIDE BENEATH THE SURFACE OF THE EARTH , 2001 .

[28]  M. V. Kranendonk Volcanic degassing, hydrothermal circulation and the flourishing of early life on Earth: A review of the evidence from c. 3490-3240 Ma rocks of the Pilbara Supergroup, Pilbara Craton, Western Australia , 2006 .

[29]  Everett L. Shock,et al.  Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: Correlation algorithms for ionic species and equation of state predictions to 5 kb and 1000°C , 1988 .

[30]  W. Menke,et al.  Length of the global plate boundary at 2.4 Ga , 1990 .

[31]  Anthony R. Kovscek,et al.  Increasing CO2 storage in oil recovery , 2005 .

[32]  M. Russell,et al.  Decrease of seawater CO2 concentration in the Late Archean: An implication from 2.6 Ga seafloor hydrothermal alteration , 2013 .

[33]  W. Seyfried,et al.  Phase equilibria constraints on the chemistry of hot spring fluids at mid-ocean ridges , 1991 .

[34]  W. Seifritz,et al.  CO2 disposal by means of silicates , 1990, Nature.

[35]  A. Bradley,et al.  The in situ pH of hydrothermal fluids at mid-ocean ridges , 2005 .

[36]  H. Staudigel,et al.  Hydrothermal alteration of a seamount complex on La Palma, Canary Islands: Implications for metamorphism in accreted terranes , 1994 .

[37]  T. Shibuya,et al.  Stratigraphy-related, low-pressure metamorphism in the Hardey Syncline, Hamersley Province, Western Australia , 2010 .

[38]  C. Bethke Geochemical and Biogeochemical Reaction Modeling , 2007 .

[39]  K. V. Von Damm,et al.  Geochemical controls on hydrothermal fluids from the Kairei and Edmond Vent Fields, 23°–25°S, Central Indian Ridge , 2006 .

[40]  W. Martin,et al.  Serpentinization as a source of energy at the origin of life , 2010, Geobiology.

[41]  T. Ota,et al.  Progressive metamorphism of the Taitao ophiolite ; Evidence for axial and off-axis hydrothermal alterations , 2007 .

[42]  L. Crispini,et al.  The role of serpentinites in cycling of carbon and sulfur: Seafloor serpentinization and subduction metamorphism , 2012 .

[43]  D. Lowe,et al.  Geologic evidence for Archean atmospheric and climatic evolution: Fluctuating levels of CO2, CH4, and O2 with an overriding tectonic control , 2004 .

[44]  D. Janecky,et al.  Carbon dioxide reaction processes in a model brine aquifer at 200 °C and 200 bars: implications for geologic sequestration of carbon , 2003 .

[45]  Ken Takai,et al.  Variability in Microbial Communities in Black Smoker Chimneys at the NW Caldera Vent Field, Brothers Volcano, Kermadec Arc , 2009 .

[46]  H. Staudigel,et al.  The smectite to chlorite transition in a fossil seamount hydrothermal system: the Basement Complex of La Palma, Canary Islands , 1995 .

[47]  Akihiko Yamagishi,et al.  Elemental dissolution of basalts with ultra-pure water at 340°C and 40 Mpa in a newly developed flow-type hydrothermal apparatus , 2013 .

[48]  Hiroki Yamamoto,et al.  Grain-scale iron isotopic distribution of pyrite from Precambrian shallow marine carbonate revealed by a femtosecond laser ablation multicollector ICP-MS technique: Possible proxy for the redox state of ancient seawater , 2010 .

[49]  Peter B. Kelemen,et al.  In situ carbonation of peridotite for CO2 storage , 2008, Proceedings of the National Academy of Sciences.

[50]  S. Utsunomiya,et al.  Seafloor hydrothermal alteration at an Archaean mid‐ocean ridge , 2001 .

[51]  A. Hofmann,et al.  Silica alteration zones in the Barberton greenstone belt: A window into subseafloor processes 3.5-3.3 Ga ago , 2008 .

[52]  L. Merlivat,et al.  Hydrothermal vent waters at 13°N on the East Pacific Rise: isotopic composition and gas concentration , 1987 .

[53]  P. Gouze,et al.  Experimental study of carbon sequestration reactions controlled by the percolation of CO2-rich brine through peridotites. , 2009, Environmental science & technology.

[54]  W. Martin,et al.  Hydrothermal vents and the origin of life , 2008, Nature Reviews Microbiology.

[55]  Ken Takai,et al.  Hydrogen-driven subsurface lithoautotrophic microbial ecosystems (SLiMEs): do they exist and why should we care? , 2005, Trends in microbiology.

[56]  James S. Cleverley,et al.  K2GWB: Utility for generating thermodynamic data files for The Geochemist's Workbench® at 0-1000 °C and 1-5000 bar from UT2K and the UNITHERM database , 2005, Comput. Geosci..

[57]  William C. Evans,et al.  Origin of the lethal gas burst from Lake Monoun, Cameroun , 1987 .

[58]  Taro Takahashi,et al.  Experimental evaluation of in situ CO2‐water‐rock reactions during CO2 injection in basaltic rocks: Implications for geological CO2 sequestration , 2007 .

[59]  W. Seyfried,et al.  Calcium and sodium exchange during hydrothermal alteration of calcic plagioclase at 400°C and 400 bars , 1993 .

[60]  N. Yoshida,et al.  Depth variation of carbon and oxygen isotopes of calcites in Archean altered upperoceanic crust: Implications for the CO2 flux from ocean to oceanic crust in the Archean , 2012 .

[61]  J. Liou Very low-grade metamorphism of volcanic and volcaniclastic rocks-mineral assemblages and mineral facies , 1987 .

[62]  A. Cairns-smith,et al.  Submarine hot springs and the origin of life , 1988, Nature.

[63]  L. Lackner,et al.  A guide to CO_2 sequestration , 2003 .

[64]  E. Shock,et al.  Inorganic species in geologic fluids: correlations among standard molal thermodynamic properties of aqueous ions and hydroxide complexes. , 1997, Geochimica et cosmochimica acta.

[65]  E. Shock,et al.  Geochemical constraints on chemolithoautotrophic metabolism by microorganisms in seafloor hydrothermal systems. , 1997, Geochimica et cosmochimica acta.

[66]  S Pacala,et al.  Stabilization Wedges: Solving the Climate Problem for the Next 50 Years with Current Technologies , 2004, Science.

[67]  B. Orberger,et al.  Origin and mechanisms of K-Si-metasomatism of ca. 3.4-3.3Ga volcaniclastic deposits and implications for Archean seawater evolution: Examples from cherts of Kittys Gap (Pilbara craton, Australia) and Msauli (Barberton Greenstone Belt, South Africa) , 2008 .

[68]  T. McCollom,et al.  Abiogenic methanogenesis during experimental komatiite serpentinization: Implications for the evolution of the early Precambrian atmosphere , 2012 .

[69]  Kenji Shimizu,et al.  H2 generation by experimental hydrothermal alteration of komatiitic glass at 300°C and 500 bars: A preliminary result from on-going experiment , 2009 .

[70]  JAMES C. G. Walker,et al.  Carbon dioxide on the early earth , 2005, Origins of life and evolution of the biosphere.

[71]  F N Spiess,et al.  East Pacific Rise: Hot Springs and Geophysical Experiments , 1980, Science.

[72]  M. Terabayashi,et al.  Archean ocean-floor metamorphism in the North Pole area, Pilbara Craton, Western Australia , 2003 .

[73]  A. Anbar,et al.  Decoupling photochemical Fe(II) oxidation from shallow-water BIF deposition , 2007 .

[74]  A. Isley Hydrothermal Plumes and the Delivery of Iron to Banded Iron Formation , 1995, The Journal of Geology.

[75]  John W. Morse,et al.  Hadean Ocean Carbonate Geochemistry , 1998 .

[76]  T. Ohsumi,et al.  Experimental studies of CO2-rock interaction at elevated temperatures under hydrothermal conditions , 2005 .

[77]  J. Kasting,et al.  Earth's early atmosphere , 1987, Science.

[78]  W. Seyfried,et al.  The effect of temperature on metal mobility in subseafloor hydrothermal systems: constraints from basalt alteration experiments , 1990 .

[79]  E. M. Winter,et al.  Disposal of carbon dioxide in aquifers in the U.S. , 1995 .

[80]  J. Korenaga Archean Geodynamics and the Thermal Evolution of Earth , 2013 .

[81]  William E. Seyfried,et al.  Redox evolution and mass transfer during serpentinization : An experimental and theoretical study at 200 °C, 500 bar with implications for ultramafic-hosted hydrothermal systems at Mid-Ocean Ridges , 2007 .

[82]  E. Shock,et al.  Distinguishing ultramafic‐from basalt‐hosted submarine hydrothermal systems by comparing calculated vent fluid compositions , 2000 .

[83]  M. Mottl,et al.  Fluid and geochemical transport through oceanic crust: a transect across the eastern flank of the Juan de Fuca Ridge , 1999 .

[84]  Kentaro Nakamura,et al.  Compositional, Physiological and Metabolic Variability in Microbial Communities Associated with Geochemically Diverse, Deep-Sea Hydrothermal Vent Fluids , 2010 .

[85]  T. Hirata,et al.  Evolution of the composition of seawater through geologic time, and its influence on the evolution of life , 2008 .

[86]  R. Coleman,et al.  H2-rich fluids from serpentinization: geochemical and biotic implications. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[87]  J. Alt,et al.  Geochemistry of Hydrothermally Altered Basalts: Deep Sea Drilling Project Hole 504B, Leg 83 , 1985 .

[88]  L. Robbins,et al.  The composition of Earth's oldest iron formations: The Nuvvuagittuq Supracrustal Belt (Québec, Canada) , 2012 .

[89]  B. Lollar,et al.  The influence of carbon source on abiotic organic synthesis and carbon isotope fractionation under hydrothermal conditions , 2010 .

[90]  P. Nehlig,et al.  Flow porosities, permeabilities and preliminary data on fluid inclusions and fossil thermal gradients in the crustal sequence of the Sumail ophiolite (Oman) , 1988 .

[91]  K. Gillis,et al.  Hydrothermal alteration patterns in supra-subduction zone ophiolites , 2000 .

[92]  Kentaro Nakamura,et al.  Ultramafics-Hydrothermalism-Hydrogenesis-HyperSLiME (UltraH3) linkage: a key insight into early microbial ecosystem in the Archean deep-sea hydrothermal systems , 2006 .

[93]  C. Pflumio Evidences for Polyphased Oceanic Alteration of the Extrusive Sequence of the Semail Ophiolite from the Salahi Block (Northern Oman) , 1991 .

[94]  E. Baker,et al.  Chemical plumes from low‐temperature hydrothermal venting on the eastern flank of the Juan de Fuca Ridge , 1997 .

[95]  H. Helgeson,et al.  Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures , 1974 .

[96]  William E Seyfried,et al.  Experimental and Theoretical Constraints on Hydrothermal Alteration Processes at Mid-Ocean Ridges , 1987 .

[97]  Kentaro Nakamura,et al.  Carbonatization of oceanic crust by the seafloor hydrothermal activity and its significance as a CO2 sink in the Early Archean , 2004 .

[98]  J. Charlou,et al.  Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (36°14'N, MAR) , 2002 .

[99]  Sally M. Benson,et al.  The role of hydrogeological and geochemical trapping in sedimentary basins for secure geological storage of carbon dioxide , 2004, Geological Society, London, Special Publications.

[100]  J. Kasting,et al.  New Constraints on Precambrian Ocean Composition , 1993, The Journal of Geology.

[101]  Everett L. Shock,et al.  Prediction of the thermodynamic properties of aqueous metal complexes to 1000°C and 5 kb , 1997 .

[102]  R. Hékinian,et al.  Sulfide Deposits from the East Pacific Rise Near 21�N , 1980, Science.

[103]  Everett L. Shock,et al.  Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: Standard partial molal properties of organic species , 1990 .