Multi-loop Integral Controllability analysis for nonlinear Multiple-Input Single-Output processes

Multi-loop integral control is still one of the most popular control strategies in industry due to its simplicity, efficiency, offset free tracking, and capability for fault tolerance. Skogestad and Morari introduced Decentralized Integral Controllability (DIC) to investigate the decentralized unconditional stability under multi-loop integral control for square systems. However, in engineering practice, some multivariable processes may not be square, which often utilize multiple redundant control inputs for the regulation of only one single output. This study extends the concept of Decentralized Integral Controllability to non-square systems, and presents sufficient conditions for Multiple-Input Single-Output nonlinear processes based on singular perturbation analysis. The proposed controllability analysis method is applied in the control of a real time temperature control system and achieves desired temperature tracking results.

[1]  Feng Ding,et al.  Parameter identification of multi-input, single-output systems based on FIR models and least squares principle , 2008, Appl. Math. Comput..

[2]  Manfred Morari,et al.  Interaction measures for systems under decentralized control , 1986, Autom..

[3]  S. Palanki,et al.  Nonlinear control of nonsquare multivariable systems , 2001 .

[4]  Moonyong Lee,et al.  Independent design of multi-loop PI/PID controllers for interacting multivariable processes , 2010 .

[5]  Hiroaki Kobayashi,et al.  Controllability under decentralized information structure , 1978 .

[6]  Yi Zhang,et al.  Nonlinear modelling and control for heart rate response to exercise , 2012, Int. J. Bioinform. Res. Appl..

[7]  Jie Bao,et al.  A passivity-based analysis for decentralized integral controllability , 2002, Autom..

[8]  Kenneth J. Hunt,et al.  Treadmill control protocols for arbitrary work rate profiles combining simultaneous nonlinear changes in speed and angle , 2008, Biomed. Signal Process. Control..

[9]  Hassan K. Khalil,et al.  Singular perturbation methods in control : analysis and design , 1986 .

[10]  A.N. Moser Designing controllers for flexible structures with H-infinity/ mu -synthesis , 1993, IEEE Control Systems.

[11]  R. Kálmán Mathematical description of linear dynamical systems , 1963 .

[12]  Peter L. Lee,et al.  Analysis of decentralized integral controllability for nonlinear systems , 2004, Comput. Chem. Eng..

[13]  M. Morari,et al.  Variable selection for decentralized control , 1992 .

[14]  M. Fan,et al.  Decentralized integral controllability and D-stability , 1990 .

[15]  Hung T. Nguyen,et al.  Multi-Loop Integral Control by Using Redundant Control Inputs for Passive Fault Tolerant Implementation , 2011 .

[16]  R. Kálmán On the general theory of control systems , 1959 .

[17]  Manfred Morari,et al.  Robust Performance of Decentralized Control Systems by Independent Designs , 1987, 1987 American Control Conference.

[18]  Mrdjan J. Jankovic,et al.  Constructive Nonlinear Control , 2011 .

[19]  L. B. Koppel Conditions imposed by process statics on multivariable process dynamics , 1985 .

[20]  E. Davison,et al.  On the stabilization of decentralized control systems , 1973 .

[21]  S. Skogestad,et al.  Performance weight selection for H-infinity and μ-control methods , 1991 .

[22]  Zalman J. Palmor,et al.  Automatic tuning of decentralized PID controllers for TITO processes , 1993, Autom..

[23]  Yi Zhang,et al.  Modelling and regulating of cardio-respiratory response for the enhancement of interval training , 2014, Biomedical engineering online.

[24]  J. B. Gomm,et al.  Solution to the Shell standard control problem using genetically tuned PID controllers , 2002 .

[25]  Norashid Aziz,et al.  Nonlinear Process Modeling of “Shell” Heavy Oil Fractionator using Neural Network , 2011 .

[26]  Steven Treiber,et al.  Multivariable control of non-square systems , 1984 .

[27]  Hung T. Nguyen,et al.  Fast tracking of a given heart rate profile in treadmill exercise , 2010, 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology.

[28]  Karl Henrik Johansson,et al.  The quadruple-tank process: a multivariable laboratory process with an adjustable zero , 2000, IEEE Trans. Control. Syst. Technol..

[29]  Yanjun Liu,et al.  Multi-innovation stochastic gradient algorithm for multiple-input single-output systems using the auxiliary model , 2009, Appl. Math. Comput..

[30]  P. J. Campo,et al.  Achievable closed-loop properties of systems under decentralized control: conditions involving the steady-state gain , 1994, IEEE Trans. Autom. Control..

[31]  Brian D. O. Anderson,et al.  Algebraic characterization of fixed modes in decentralized control , 1981, Autom..

[32]  Thomas F. Edgar,et al.  Conditions for decentralized integral controllability , 2002 .

[33]  M. Aoki On feedback stabilizability of decentralized dynamic systems , 1972 .