Climate change and evolutionary adaptations at species' range margins.

During recent climate warming, many insect species have shifted their ranges to higher latitudes and altitudes. These expansions mirror those that occurred after the Last Glacial Maximum when species expanded from their ice age refugia. Postglacial range expansions have resulted in clines in genetic diversity across present-day distributions, with a reduction in genetic diversity observed in a wide range of insect taxa as one moves from the historical distribution core to the current range margin. Evolutionary increases in dispersal at expanding range boundaries are commonly observed in virtually all insects that have been studied, suggesting a positive feedback between range expansion and the evolution of traits that accelerate range expansion. The ubiquity of this phenomenon suggests that it is likely to be an important determinant of range changes. A better understanding of the extent and speed of adaptation will be crucial to the responses of biodiversity and ecosystems to climate change.

[1]  T. Buckley,et al.  Phylogeography and ecological niche modelling of the New Zealand stick insect Clitarchus hookeri (White) support survival in multiple coastal refugia , 2010 .

[2]  I. Hanski,et al.  Pgi Genotype Influences Flight Metabolism at the Expanding Range Margin of the European Map Butterfly , 2010 .

[3]  R. Gomulkiewicz,et al.  Genetics, adaptation, and invasion in harsh environments , 2010, Evolutionary applications.

[4]  T. Buckley,et al.  Identifying glacial refugia in a geographic parthenogen using palaeoclimate modelling and phylogeography: the New Zealand stick insect Argosarchus horridus (White) , 2009, Molecular ecology.

[5]  T. Schmitt,et al.  Biogeographical connections between the Maghreb and the Mediterranean peninsulas of southern Europe , 2009 .

[6]  J. Pasteels,et al.  Testing Phylogeographic Hypotheses in a Euro-Siberian Cold-Adapted Leaf Beetle with Coalescent Simulations , 2009, Evolution; international journal of organic evolution.

[7]  Brendan A. Wintle,et al.  Climate change, connectivity and conservation decision making: back to basics , 2009 .

[8]  M. Takeda,et al.  Northerly shift in voltinism watershed in Hyphantria cunea (Drury) (Lepidoptera: Arctiidae) along the Japan Sea coast: Evidence of global warming? , 2009 .

[9]  Peter J. Bradbury,et al.  The Last Glacial Maximum , 2009, Science.

[10]  D. J. Thompson,et al.  Variation in morphology between core and marginal populations of three British damselflies , 2009 .

[11]  N. Ryrholm,et al.  Are peripheral populations special? Congruent patterns in two butterfly species , 2009 .

[12]  H. Van Dyck,et al.  Larval food stress differentially affects flight morphology in male and female speckled woods (Pararge aegeria) , 2009 .

[13]  R. Brandl,et al.  No genetic differentiation in the rose-infesting fruit flies Rhagoletis alternata and Carpomya schineri (Diptera: Tephritidae) across central Europe , 2009 .

[14]  C. Simon,et al.  Glacial refugia in a maritime temperate climate: Cicada (Kikihia subalpina) mtDNA phylogeography in New Zealand , 2009, Molecular ecology.

[15]  C. Dytham Evolved dispersal strategies at range margins , 2009, Proceedings of the Royal Society B: Biological Sciences.

[16]  M. Luoto,et al.  Species traits explain recent range shifts of Finnish butterflies , 2009 .

[17]  H. Barlow,et al.  Elevation increases in moth assemblages over 42 years on a tropical mountain , 2009, Proceedings of the National Academy of Sciences.

[18]  N. Papadopoulos,et al.  Life‐history evolution of an invasive tephritid , 2008 .

[19]  N. Schtickzelle,et al.  Positive correlation between genetic diversity and fitness in a large, well-connected metapopulation , 2008, BMC Biology.

[20]  Joachim Besold,et al.  Strong genetic impoverishment from the centre of distribution in southern Europe to peripheral Baltic and isolated Scandinavian populations of the pearly heath butterfly , 2008 .

[21]  Y. Alarie,et al.  Rapid morphological change in stream beetle museum specimens correlates with climate change , 2008 .

[22]  K. F. Conrad,et al.  Phenotypic changes and reduced genetic diversity have accompanied the rapid decline of the garden tiger moth (Arctia caja) in the U.K. , 2008 .

[23]  J. Hughes,et al.  Cyclic habitat displacements during Pleistocene glaciations have induced independent evolution of Tasimia palpata populations (Trichoptera: Tasimiidae) in isolated subtropical rain forest patches , 2008 .

[24]  M. Kato,et al.  Glacial bottleneck and postglacial recolonization of a seed parasitic weevil, Curculio hilgendorfi, inferred from mitochondrial DNA variation , 2008, Molecular ecology.

[25]  T. Schmitt,et al.  Africa goes Europe: The complete phylogeography of the marbled white butterfly species complex Melanargia galathea/M. lachesis (Lepidoptera: Satyridae) , 2008 .

[26]  C. Rosenzweig,et al.  Attributing physical and biological impacts to anthropogenic climate change , 2008, Nature.

[27]  Paul R. Martin,et al.  Impacts of climate warming on terrestrial ectotherms across latitude , 2008, Proceedings of the National Academy of Sciences.

[28]  J. Thompson,et al.  Diverse historical processes shape deep phylogeographical divergence in the pollinating seed parasite Greya politella , 2008, Molecular ecology.

[29]  T. Schmitt,et al.  The genetic structure of the mountain forest butterfly Erebia euryale unravels the late Pleistocene and postglacial history of the mountain coniferous forest biome in Europe , 2008, Molecular ecology.

[30]  J. Hanspach,et al.  Climatic Risk Atlas of European Butterflies , 2008 .

[31]  W. Bradshaw,et al.  Genetic response to rapid climate change: it's seasonal timing that matters , 2008, Molecular ecology.

[32]  C. Moritz,et al.  Comparative phylogeography and speciation of dung beetles from the Australian Wet Tropics rainforest , 2007, Molecular ecology.

[33]  N. Wahlberg,et al.  The effects of Pleistocene glaciations on the phylogeography of Melitaea cinxia (Lepidoptera: Nymphalidae) , 2007 .

[34]  C. Dytham,et al.  Modelling and analysing evolution of dispersal in populations at expanding range boundaries , 2007 .

[35]  Robert J. Wilson,et al.  An elevational shift in butterfly species richness and composition accompanying recent climate change , 2007 .

[36]  Johan Olausson,et al.  The Millennium Atlas of Butterflies in Britain and Ireland , 2007 .

[37]  J. Hill,et al.  Role of larval host plants in the climate-driven range expansion of the butterfly Polygonia c-album. , 2007, The Journal of animal ecology.

[38]  I. Miguel,et al.  Gene flow within the M evolutionary lineage of Apis mellifera: role of the Pyrenees, isolation by distance and post-glacial re-colonization routes in the western Europe , 2007, Apidologie.

[39]  C. Kerdelhué,et al.  Phylogeography of a host-specific insect: genetic structure of Ips typographus in Europe does not reflect past fragmentation of its host , 2007 .

[40]  T. Gomi Seasonal adaptations of the fall webworm Hyphantria cunea (Drury) (Lepidoptera: Arctiidae) following its invasion of Japan , 2007, Ecological Research.

[41]  C. Parmesan Ecological and Evolutionary Responses to Recent Climate Change , 2006 .

[42]  George W. Gilchrist,et al.  All stressed out and nowhere to go: does evolvability limit adaptation in invasive species? , 2006, Genetica.

[43]  B. Huntley,et al.  Impacts of climate warming and habitat loss on extinctions at species' low‐latitude range boundaries , 2006 .

[44]  S. Elias Quaternary beetle research: the state of the art , 2006 .

[45]  J. Peñuelas,et al.  Natural selection and climate change: temperature‐linked spatial and temporal trends in gene frequency in Fagus sylvatica , 2006, Molecular ecology.

[46]  D. Roy,et al.  Species richness changes lag behind climate change , 2006, Proceedings of the Royal Society B: Biological Sciences.

[47]  Andrew P. Martin,et al.  USING COALESCENT SIMULATIONS TO TEST THE IMPACT OF QUATERNARY CLIMATE CYCLES ON DIVERGENCE IN AN ALPINE PLANT-INSECT ASSOCIATION , 2006, Evolution; international journal of organic evolution.

[48]  I. Hanski,et al.  Molecular-Level Variation Affects Population Growth in a Butterfly Metapopulation , 2006, PLoS biology.

[49]  T. Schmitt,et al.  Genetic differentiation of the marbled white butterfly, Melanargia galathea, accounts for glacial distribution patterns and postglacial range expansion in southeastern Europe , 2006, Molecular ecology.

[50]  S. Berlocher,et al.  Phylogeography of postglacial range expansion in Nigronia serricornis Say (Megaloptera: Corydalidae) , 2006, Molecular ecology.

[51]  C. Dytham,et al.  Genetic diversity in butterflies: interactive effects of habitat fragmentation and climate-driven range expansion , 2006, Biology Letters.

[52]  D. Roy,et al.  The distributions of a wide range of taxonomic groups are expanding polewards , 2006 .

[53]  T. Schmitt,et al.  Disjunct distributions during glacial and interglacial periods in mountain butterflies: Erebia epiphron as an example , 2006, Journal of evolutionary biology.

[54]  J. Marden,et al.  A candidate locus for variation in dispersal rate in a butterfly metapopulation , 2005, Proceedings of the Royal Society B: Biological Sciences.

[55]  D. Gutiérrez,et al.  Changes to the elevational limits and extent of species ranges associated with climate change. , 2005, Ecology letters.

[56]  Brian D. Farrell,et al.  Phylogeography of the longhorn cactus beetle Moneilema appressum LeConte (Coleoptera: Cerambycidae): was the differentiation of the Madrean sky islands driven by Pleistocene climate changes? , 2005, Molecular ecology.

[57]  T. Schmitt,et al.  The fourth paradigm pattern of post‐glacial range expansion of European terrestrial species: the phylogeography of the Marbled White butterfly (Satyrinae, Lepidoptera) , 2005 .

[58]  R. Petit,et al.  Conserving biodiversity under climate change: the rear edge matters. , 2005, Ecology letters.

[59]  W. G. Strand,et al.  How Much More Global Warming and Sea Level Rise? , 2005, Science.

[60]  T. Wigley The Climate Change Commitment , 2005, Science.

[61]  David B. Roy,et al.  A northward shift of range margins in British Odonata , 2005 .

[62]  Otso Ovaskainen,et al.  Variation in migration propensity among individuals maintained by landscape structure , 2004 .

[63]  C. Thomas,et al.  Changes in Dispersal during Species’ Range Expansions , 2004, The American Naturalist.

[64]  O. Phillips,et al.  Extinction risk from climate change , 2004, Nature.

[65]  T. Schmitt,et al.  The genetic pattern of population threat and loss: a case study of butterflies , 2004, Molecular ecology.

[66]  Andrew P. Martin,et al.  HISTORIC CYCLES OF FRAGMENTATION AND EXPANSION IN PARNASSIUS SMINTHEUS (PAPILIONIDAE) INFERRED USING MITOCHONDRIAL DNA , 2004, Evolution; international journal of organic evolution.

[67]  C. Dytham,et al.  Evolutionary trade-offs between reproduction and dispersal in populations at expanding range boundaries , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[68]  T. Schmitt,et al.  Did Polyommatus icarus (Lepidoptera: Lycaenidae) have distinct glacial refugia in southern Europe? Evidence from population genetics , 2003 .

[69]  J. Fordyce,et al.  CONTEMPORARY PATTERNS IN A HISTORICAL CONTEXT: PHYLOGEOGRAPHIC HISTORY OF THE PIPEVINE SWALLOWTAIL, BATTUS PHILENOR (PAPILIONIDAE) , 2003, Evolution; international journal of organic evolution.

[70]  G. Yohe,et al.  A globally coherent fingerprint of climate change impacts across natural systems , 2003, Nature.

[71]  J. K. Hill,et al.  Responses of butterflies to twentieth century climate warming: implications for future ranges , 2002, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[72]  P. Aerts,et al.  Does flight morphology relate to flight performance? An experimental test with the butterfly **Pararge aegeria** , 2002 .

[73]  I. Hanski,et al.  Population history and life history influence the migration rate of female Glanville fritillary butterflies , 2002 .

[74]  W. Bradshaw,et al.  Genetic shift in photoperiodic response correlated with global warming , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[75]  J. K. Hill,et al.  Rapid responses of British butterflies to opposing forces of climate and habitat change , 2001, Nature.

[76]  R. Nichols,et al.  Genetic differentiation of a European caddisfly: past and present gene flow among fragmented larval habitats , 2001, Molecular ecology.

[77]  Brian Huntley,et al.  Impacts of landscape structure on butterfly range expansion , 2001 .

[78]  V. Loeschcke,et al.  Variation in body size and life history traits in Drosophila aldrichi and D. buzzatii from a latitudinal cline in eastern Australia , 2000, Heredity.

[79]  G. Hewitt The genetic legacy of the Quaternary ice ages , 2000, Nature.

[80]  Kevin J. Gaston,et al.  Thermal tolerance, climatic variability and latitude , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[81]  A. C. James,et al.  Cellular basis of wing size variation in Drosophila melanogaster: a comparison of latitudinal clines on two continents , 2000, Heredity.

[82]  R. Huey,et al.  Rapid evolution of a geographic cline in size in an introduced fly. , 2000, Science.

[83]  J. K. Hill,et al.  Evolution of flight morphology in a butterfly that has recently expanded its geographic range , 1999, Oecologia.

[84]  G. McColl,et al.  The Drosophila heat shock hsr-omega gene: an allele frequency cline detected by quantitative PCR. , 1999, Molecular biology and evolution.

[85]  M. Hassall,et al.  Ecotypic differentiation in the grasshopper Chorthippus brunneus: life history varies in relation to climate , 1999, Oecologia.

[86]  M. Baguette,et al.  Spatial and temporal population genetic structure of the butterfly Aglais urticae L. (Lepidoptera, Nymphalidae) , 1999, Molecular ecology.

[87]  Brian Huntley,et al.  Climate and habitat availability determine 20th century changes in a butterfly's range margin , 1999, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[88]  C. Parmesan,et al.  Poleward shifts in geographical ranges of butterfly species associated with regional warming , 1999, Nature.

[89]  P. Armbruster,et al.  EFFECTS OF POSTGLACIAL RANGE EXPANSION ON ALLOZYME AND QUANTITATIVE GENETIC VARIATION OF THE PITCHER‐PLANT MOSQUITO, WYEOMYIA SMITHII , 1998, Evolution; international journal of organic evolution.

[90]  G. Hewitt,et al.  mtDNA phylogeography and postglacial patterns of subdivision in the meadow grasshopper Chorthippus parallelus , 1998, Heredity.

[91]  I. Hanski,et al.  Inbreeding and extinction in a butterfly metapopulation , 1998, Nature.

[92]  J. Severinghaus,et al.  Timing of abrupt climate change at the end of the Younger Dryas interval from thermally fractionated gases in polar ice , 1998, Nature.

[93]  R. Nichols,et al.  Spatial patterns of genetic variation generated by different forms of dispersal during range expansion , 1996, Heredity.

[94]  G. Hewitt Some genetic consequences of ice ages, and their role in divergence and speciation , 1996 .

[95]  R. Gomulkiewicz,et al.  WHEN DOES EVOLUTION BY NATURAL SELECTION PREVENT EXTINCTION? , 1995, Evolution; international journal of organic evolution.

[96]  W. Blanckenhorn,et al.  Life history adaptation along a latitudinal cline in the water strider Aquarius remigis (Heteroptera: Gerridae) , 1995 .

[97]  H. Noda Geographic Variation of Nymphal Diapause in the Small Brown Planthopper in Japan , 1992 .

[98]  J. Niemelä,et al.  Distribution and abundance of an exotic ground-beetle (Carabidae): a test of community impact. , 1991 .

[99]  S. Elias Insects and Climate ChangeFossil evidence from the Rocky Mountains , 1991 .

[100]  Brian Huntley,et al.  How Plants Respond to Climate Change: Migration Rates, Individualism and the Consequences for Plant Communities , 1991 .

[101]  R. B. Srygley,et al.  Predation and the Flight, Morphology, and Temperature of Neotropical Rain-Forest Butterflies , 1990, The American Naturalist.

[102]  R. Dennis,et al.  Butterfly wing morphology variation in the British Isles: the influence of climate, behavioural posture and the hostplant-habitat , 1989 .

[103]  K. Briffa,et al.  Seasonal temperatures in Britain during the past 22,000 years, reconstructed using beetle remains , 1987, Nature.

[104]  M. King,et al.  The status of the swallowtail butterfly in Britain , 1976 .

[105]  S. Larsson,et al.  Urticating hairs in arthropods: their nature and medical significance. , 2011, Annual review of entomology.

[106]  D. Six,et al.  The role of phytopathogenicity in bark beetle-fungus symbioses: a challenge to the classic paradigm. , 2011, Annual review of entomology.

[107]  T. Pitts‐Singer,et al.  The alfalfa leafcutting bee, Megachile rotundata: the world's most intensively managed solitary bee. , 2011, Annual review of entomology.

[108]  M. Vreysen,et al.  Salivary gland hypertrophy viruses: a novel group of insect pathogenic viruses. , 2011, Annual review of entomology.

[109]  R. Eisen,et al.  Using Geographic Information Systems and Decision Support Systems for the Prediction , Prevention , and Control of Vector-Borne Diseases , 2010 .

[110]  G. Hewitt Post-glacial recolonization of European biota , 2007 .

[111]  O. Edenhofer,et al.  Mitigation from a cross-sectoral perspective , 2007 .

[112]  Otso Ovaskainen,et al.  Dispersal-related life-history trade-offs in a butterfly metapopulation. , 2006, The Journal of animal ecology.

[113]  J. Elkinton,et al.  Adaptation during biological invasions and the case of Adelges tsugae , 2005 .

[114]  B. Huntley,et al.  Analysing and modelling range changes in UK butterflies. , 2001 .

[115]  R. Denno,et al.  Physiology and ecology of dispersal polymorphism in insects. , 1997, Annual review of entomology.

[116]  H. Dyck,et al.  Morphological and Genetic Variation in the Speckled Wood Butterfly (Pararge Aegeria L.) Among Differently Fragmented Landscapes , 1997 .

[117]  Camille Parmesan,et al.  Climate and species' range , 1996, Nature.

[118]  G. Stone,et al.  Genetic structure of invading insects and the case of the knopper gallwasp , 1996 .

[119]  R. Dennis Butterflies and climate change , 1993 .