A global oceanic sediment model for long‐term climate studies

A chemically reactive 10-layer sediment module was coupled to a geochemical ocean general circulation model (the Hamburg Oceanic Carbon Cycle Model). The sediment model includes four solid sediment components (CaCO3, opal, organic carbon, and clay), and five pore water substances (dissolved inorganic carbon, total alkalinity, PO43−, O2, Si(OH)4) plus corresponding species containing 13C and 14C instead of 12C. The processes, namely, particle deposition, pore water reactions, pore water diffusion and interaction with the open water column, vertical sediment advection, sediment accumulation, and bioturbation, are simulated through basic parametrizations. For the water column part the Si and C cycles are coupled by a formulation of the “rain ratio” Si:C(CaCO3):C(POC), where POC is particulate organic carbon, in biogenic particle export production, with CaCO3 frustrule production growing in parallel to a weakening of opal production during progressing deficiency of dissolved silicate in the surface layer. For two preindustrial velocity fields the model reproduces major features of observed water column and sediment tracer distributions parallel to a correct preindustrial CO2 level close to 280 ppm. The model reacts sensitively to the formulation of the POC flux parametrization, the rain ratio, as well as the solubility of opal but is fairly insensitive to changes in the bioturbation rate as well as the amount of clay deposition. A simulation of the sediment distribution by use of a velocity field, which represents the ocean at conditions during the last glacial maximum, yields realistic glacial-interglacial changes for the Atlantic Ocean, while discrepancies remain for the Indo-Pacific region. A significant decrease of the atmospheric pCO2 could be achieved through an additional change of water column inventories by a change in weathering input of Si and alkalinity.

[1]  G. Keller,et al.  Paleoceanographic implications of Miocene deep-sea hiatuses , 1983 .

[2]  D. C. Hurd Factors affecting solution rate of biogenic opal in seawater , 1972 .

[3]  W. Prell,et al.  Climatic change and CaCO3 preservation: An 800,000 year bathymetric Reconstruction from the central equatorial Pacific Ocean , 1989 .

[4]  H. Oeschger,et al.  Evidence from polar ice cores for the increase in atmospheric CO2 in the past two centuries , 1985, Nature.

[5]  Li Yuan-hui,et al.  Diffusion of ions in sea water and in deep-sea sediments , 1974 .

[6]  Erwin Suess,et al.  Particulate organic carbon flux in the oceans—surface productivity and oxygen utilization , 1980, Nature.

[7]  L. François,et al.  Glacial‐interglacial variability of atmospheric CO2 due to changing continental silicate rock weathering: A model study , 1996 .

[8]  M. Brzezinski,et al.  THE Si:C:N RATIO OF MARINE DIATOMS: INTERSPECIFIC VARIABILITY AND THE EFFECT OF SOME ENVIRONMENTAL VARIABLES 1 , 1985 .

[9]  M. Leinen,et al.  Distribution of biogenic silica and quartz in recent deep-sea sediments , 1986 .

[10]  R. F. Nolting,et al.  Dissolved aluminium in the Weddell-Scotia Confluence and effect of Al on the dissolution kinetics of biogenic silica , 1991 .

[11]  E. Boyle The role of vertical chemical fractionation in controlling late Quaternary atmospheric carbon dioxide , 1988 .

[12]  S. Levitus Climatological Atlas of the World Ocean , 1982 .

[13]  D. M. Nelson,et al.  Production and dissolution of biogenic silica in the ocean: Revised global estimates, comparison with regional data and relationship to biogenic sedimentation , 1995 .

[14]  E. Maier‐Reimer,et al.  On the sensitivity of an ocean general circulation model to glacial boundary conditions , 1996 .

[15]  L. Peterson,et al.  Carbonate Preservation and Rates of Climatic Change: An 800 KYR Record from the Indian Ocean , 2013 .

[16]  E. Maier‐Reimer,et al.  Ocean-circulation model of the carbon cycle , 1990 .

[17]  David M. Karl,et al.  VERTEX: carbon cycling in the northeast Pacific , 1987 .

[18]  J. Herguera Deep-sea benthic foraminifera and biogenic opal: Glacial to postglacial productivity changes in the western equatorial Pacific , 1992 .

[19]  David Archer,et al.  Multiple timescales for neutralization of fossil fuel CO2 , 1997 .

[20]  S. Chillrud,et al.  River Fluxes of Dissolved Silica to the Ocean Were Higher during Glacials: Ge/Si In Diatoms, Rivers, and Oceans , 1992 .

[21]  D. C. Hurd Interactions of biogenic opal, sediment and seawater in the Central Equatorial Pacific , 1973 .

[22]  W. Balsam Carbonate Dissolution on the Muir Seamount (Western North Atlantic): Interglacial/Glacial Changes , 1983 .

[23]  D. Schink,et al.  Effects of Bioturbation on Sediment—Seawater Interaction , 1977 .

[24]  B. Boudreau Is burial velocity a master parameter for bioturbation , 1994 .

[25]  W. Broecker,et al.  Evidence for a higher pH in the glacial ocean from boron isotopes in foraminifera , 1995, Nature.

[26]  J. D. Hays,et al.  Evidence for lower productivity in the Antarctic Ocean during the last glaciation , 1991, Nature.

[27]  Klaus Hasselmann,et al.  Mean Circulation of the Hamburg LSG OGCM and Its Sensitivity to the Thermohaline Surface Forcing , 1993 .

[28]  T. Fichefet,et al.  High Latitude Deep Water Sources During the Last Glacial Maximum and the Intensity of the Global Oceanic Circulation , 1996 .

[29]  W. Prell,et al.  Pacific CaCO3 Preservation and δ18O Since 4 Ma: Paleoceanic and Paleoclimatic Implications , 1991 .

[30]  J. Edmond,et al.  On the calculation of the degree of saturation of sea water with respect to calcium carbonate under in situ conditions , 1970 .

[31]  K. Hasselmann,et al.  Transport and storage of CO2 in the ocean ——an inorganic ocean-circulation carbon cycle model , 1987 .

[32]  C. Lorius,et al.  Vostok ice core provides 160,000-year record of atmospheric CO2 , 1987, Nature.

[33]  B. Hales,et al.  Calcite dissolution in sediments of the Ontong‐Java Plateau: In situ measurements of pore water O2 and pH , 1996 .

[34]  Andrew G. Dickson,et al.  The estimation of acid dissociation constants in seawater media from potentionmetric titrations with strong base. I. The ionic product of water — Kw , 1979 .

[35]  M. Suter,et al.  Increased biological productivity and export production in the glacial Southern Ocean , 1995, Nature.

[36]  Katharina D. Six,et al.  Effects of plankton dynamics on seasonal carbon fluxes in an ocean general circulation model , 1996 .

[37]  H. Friedli,et al.  Ice core record of the 13C/12C ratio of atmospheric CO2 in the past two centuries , 1986, Nature.

[38]  K. L. Hanson,et al.  Consistent fractionation of 13C in nature and in the laboratory: Growth‐rate effects in some haptophyte algae , 1997, Global biogeochemical cycles.

[39]  Taro Takahashi,et al.  Primary production at 47°N and 20°W in the North Atlantic Ocean: a comparison between the 14C incubation method and the mixed layer carbon budget , 1993 .

[40]  E. Maier‐Reimer,et al.  Sensitivity of paleonutrient tracer distributions and deep‐sea circulation to glacial boundary conditions , 1999 .

[41]  D. M. Nelson,et al.  The Silica Balance in the World Ocean: A Reestimate , 1995, Science.

[42]  P. Cappellen,et al.  Biogenic silica dissolution in sediments of the Southern Ocean. II. Kinetics , 1997 .

[43]  R. Jahnke,et al.  The global ocean flux of particulate organic carbon: Areal distribution and magnitude , 1996 .

[44]  R. Garrels,et al.  The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years , 1983 .

[45]  J. Duplessy,et al.  Surface salinity reconstruction of the north-atlantic ocean during the last glacial maximum , 1991 .

[46]  E. Maier‐Reimer,et al.  Effect of deep-sea sedimentary calcite preservation on atmospheric CO2 concentration , 1994, Nature.

[47]  R. Aller,et al.  Diffusion coefficients in nearshore marine sediments1 , 1982 .

[48]  D. Archer,et al.  Direct measurement of the diffusive sublayer at the deep sea floor using oxygen microelectrodes , 1989, Nature.

[49]  C. Heinze,et al.  Sedimentary response to ocean gateway circulation changes , 1997 .

[50]  Wallace S. Broecker,et al.  Neutralization of Fossil Fuel CO2 by Marine Calcium Carbonate , 1977 .

[51]  A. J. Bennekom Silica Signals in the South Atlantic , 1996 .

[52]  J. Vanderborght,et al.  Kinetic models of diagenesis in disturbed sediments: Part 1. mass transfer properties and silica diagenesis , 1977 .

[53]  J. Morley,et al.  Biogenic opal in Southern Ocean sediments over the last 450,000 years: Implications for surface water chemistry and circulation , 1991 .

[54]  E. Boyle,et al.  Tertiary paleoceanic chemical variability: Unintended consequences of simple geochemical models , 1988 .

[55]  Carlo H. R. Heip,et al.  Modeling 210Pb-derived mixing activity in ocean margin sediments: Diffusive versus nonlocal mixing , 1996 .

[56]  E. Maier‐Reimer,et al.  Glacial pCO2 Reduction by the World Ocean: Experiments With the Hamburg Carbon Cycle Model , 1991 .

[57]  H. Oeschger,et al.  CO2 measurements from polar ice cores: more data from different sites , 1991 .

[58]  A. P. Lisitsyn Basic relationships in distribution of modern siliceous sediments and their connection with climatic zonation , 1967 .

[59]  B. Peterson,et al.  Particulate organic matter flux and planktonic new production in the deep ocean , 1979, Nature.

[60]  Sol Hellerman,et al.  Normal Monthly Wind Stress Over the World Ocean with Error Estimates , 1983 .

[61]  M. Lyle,et al.  Flux comparisons between sediments and sediment traps in the eastern tropical Pacific: Implications for atmospheric C02 variations during the Pleistocene1 , 1985 .

[62]  R. Keir The dissolution kinetics of biogenic calcium carbonates in seawater , 1980 .

[63]  David Archer,et al.  A data-driven model of the global calcite lysocline , 1996 .

[64]  Taro Takahashi,et al.  Redfield ratio based on chemical data from isopycnal surfaces , 1985 .

[65]  A. Winguth Assimilation von δ13C-Daten aus marinen Sedimentbohrkernen in das LSG zur Rekonstruktion der Ozeanzirkulation wahrend des letzten glazialen Maximums , 1997 .

[66]  David Archer,et al.  What Controls Opal Preservation in Tropical Deep‐Sea Sediments? , 1993 .

[67]  C. Heinze Zur Erniedrigung des atmosphärischen Kohlendioxidgehalts durch den Weltozean während der letzten Eiszeit , 1990 .

[68]  Olivier Ragueneau,et al.  Opal studied as a marker of paleoproductivity , 1996 .

[69]  kwang-yul kim,et al.  Effect of drake and panamanian gateways on the circulation of an Ocean model , 1993 .

[70]  D. Murray,et al.  The record of Late Pleistocene biogenic sedimentation in the eastern tropical Pacific Ocean , 1988 .

[71]  E. Maier‐Reimer,et al.  Transient tracers in a global OGCM : Source functions and simulated distributions , 1998 .

[72]  W. Broecker,et al.  Oceanic radiocarbon: Separation of the natural and bomb components , 1995 .

[73]  D. Schink,et al.  Redistribution of dissolved and adsorbed materials in abyssal marine sediments undergoing biological stirring , 1978 .

[74]  B. Boudreau Diagenetic models and their implementation , 1997 .

[75]  T. Crowley Calcium-carbonate preservation patterns in the central North Atlantic during the last 150,000 years☆ , 1983 .

[76]  E. Maier‐Reimer,et al.  Modelling of Geochemical Tracers in the Ocean , 1990 .

[77]  B. Grieger,et al.  Investigating the sensitivity of the Atmospheric General Circulation Model ECHAM 3 to paleoclimatic boundary conditions , 1996 .

[78]  C. Culberson,et al.  EFFECT OF PRESSURE ON CARBONIC ACID, BORIC ACID, AND THE pH IN SEAWATER1 , 1968 .

[79]  M. Denis,et al.  Deep-ocean metabolic CO2 production: calculations from ETS activity , 1988 .

[80]  E. Maier‐Reimer,et al.  Geochemical cycles in an Ocean General Circulation Model , 1993 .

[81]  F. Millero,et al.  The dissociation constants of carbonic acid in seawater at salinities 5 to 45 and temperatures 0 to 45°C , 1993 .

[82]  P. Cappellen,et al.  Biogenic silica dissolution in sediments of the Southern Ocean. I. Solubility , 1997 .

[83]  J. Cole,et al.  Sedimentation of biogenic matter in the deep ocean , 1982 .

[84]  David Archer,et al.  Modeling the calcite lysocline , 1991 .

[85]  J. Toggweiler,et al.  Downward transport and fate of organic matter in the ocean: Simulations with a general circulation model , 1992 .

[86]  J. V. Iperen,et al.  Aluminium-rich opal: an intermediate in the preservation of biogenic silica in the Zaire (Congo) deep-sea fan , 1989 .

[87]  D. DeMaster The supply and accumulation of silica in the marine environment , 1981 .

[88]  Ralph J. Slutz,et al.  A Comprehensive Ocean-Atmosphere Data Set , 1987 .