Automated detection of cerebral microbleeds in MR images: A two-stage deep learning approach

Graphical abstract

[1]  Dumitru Erhan,et al.  Going deeper with convolutions , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[2]  E Mark Haacke,et al.  Semiautomated detection of cerebral microbleeds in magnetic resonance images. , 2011, Magnetic resonance imaging.

[3]  Stephen M Smith,et al.  Fast robust automated brain extraction , 2002, Human brain mapping.

[4]  Andreas Charidimou,et al.  Cerebral microbleeds: detection, mechanisms and clinical challenges , 2011 .

[5]  Shuihua Wang,et al.  Cerebral Micro-Bleeding Detection Based on Densely Connected Neural Network , 2019, Front. Neurosci..

[6]  Jie Liu,et al.  Detecting cerebral microbleeds with transfer learning , 2019, Machine Vision and Applications.

[7]  Jose George,et al.  Using YOLO based deep learning network for real time detection and localization of lung nodules from low dose CT scans , 2018, Medical Imaging.

[8]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[9]  Ross B. Girshick,et al.  Fast R-CNN , 2015, 1504.08083.

[10]  Ali Farhadi,et al.  YOLO9000: Better, Faster, Stronger , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[11]  Saifeng Liu,et al.  Cerebral microbleed detection using Susceptibility Weighted Imaging and deep learning , 2019, NeuroImage.

[12]  Tae-Seong Kim,et al.  A fully integrated computer-aided diagnosis system for digital X-ray mammograms via deep learning detection, segmentation, and classification , 2018, Int. J. Medical Informatics.

[13]  Ali Farhadi,et al.  You Only Look Once: Unified, Real-Time Object Detection , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[14]  Edwin Valarezo,et al.  Simultaneous Detection and Classification of Breast Masses in Digital Mammograms via a Deep Learning YOLO-based CAD System , 2018, Comput. Methods Programs Biomed..

[15]  Bin Sheng,et al.  Computer-Assisted Decision Support System in Pulmonary Cancer detection and stage classification on CT images , 2018, J. Biomed. Informatics.

[16]  Yu-Chung N. Cheng,et al.  Susceptibility weighted imaging (SWI) , 2004, Zeitschrift fur medizinische Physik.

[17]  Hao Chen,et al.  Automatic Detection of Cerebral Microbleeds From MR Images via 3D Convolutional Neural Networks , 2016, IEEE Transactions on Medical Imaging.

[18]  M. A. Al-masni,et al.  Detection and classification of the breast abnormalities in digital mammograms via regional Convolutional Neural Network , 2017, 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).

[19]  Yong Fan,et al.  A deep learning model integrating FCNNs and CRFs for brain tumor segmentation , 2017, Medical Image Anal..

[20]  Hao Chen,et al.  VoxResNet: Deep voxelwise residual networks for brain segmentation from 3D MR images , 2017, NeuroImage.

[21]  Max A. Viergever,et al.  Efficient detection of cerebral microbleeds on 7.0T MR images using the radial symmetry transform , 2012, NeuroImage.

[22]  Sujata Chaudhari,et al.  Yolo Real Time Object Detection , 2020 .

[23]  Andreas Charidimou,et al.  Cerebral microbleeds: a guide to detection and clinical relevance in different disease settings , 2013, Neuroradiology.

[24]  Susan M. Chang,et al.  Computer-aided detection of radiation-induced cerebral microbleeds on susceptibility-weighted MR images☆ , 2013, NeuroImage: Clinical.

[25]  Steven Warach,et al.  Cerebral Microbleeds : A Field Guide to their Detection and Interpretation , 2012 .

[26]  Monique M. B. Breteler,et al.  Cerebral Microbleeds : A Field Guide to their Detection and Interpretation , 2012 .

[27]  Tian Liu,et al.  Intracranial calcifications and hemorrhages: characterization with quantitative susceptibility mapping. , 2013, Radiology.

[28]  F. Ciompi,et al.  You Only Look on Lymphocytes Once , 2018 .

[29]  Anand Viswanathan,et al.  Cerebral microbleeds: overview and implications in cognitive impairment , 2014, Alzheimer's Research & Therapy.

[30]  Janine M. Lupo,et al.  Toward Automatic Detection of Radiation-Induced Cerebral Microbleeds Using a 3D Deep Residual Network , 2018, Journal of Digital Imaging.

[31]  Trevor Darrell,et al.  Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation , 2013, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[32]  Mun-Taek Choi,et al.  Skin lesion segmentation in dermoscopy images via deep full resolution convolutional networks , 2018, Comput. Methods Programs Biomed..