Reviving the lithium metal anode for high-energy batteries.

[1]  Jianming Zheng,et al.  Anode‐Free Rechargeable Lithium Metal Batteries , 2016 .

[2]  Lynden A. Archer,et al.  Design principles for electrolytes and interfaces for stable lithium-metal batteries , 2016, Nature Energy.

[3]  Yayuan Liu,et al.  All-Integrated Bifunctional Separator for Li Dendrite Detection via Novel Solution Synthesis of a Thermostable Polyimide Separator. , 2016, Journal of the American Chemical Society.

[4]  Yan‐Bing He,et al.  Chemical Dealloying Derived 3D Porous Current Collector for Li Metal Anodes , 2016, Advanced materials.

[5]  Shaofei Wang,et al.  Plating a Dendrite-Free Lithium Anode with a Polymer/Ceramic/Polymer Sandwich Electrolyte. , 2016, Journal of the American Chemical Society.

[6]  Yayuan Liu,et al.  Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. , 2016, Nature nanotechnology.

[7]  Yibo Wang,et al.  Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries , 2016, Proceedings of the National Academy of Sciences.

[8]  A. Bhatt,et al.  Stabilizing lithium metal using ionic liquids for long-lived batteries , 2016, Nature Communications.

[9]  Jin Ge,et al.  Free-Standing Copper Nanowire Network Current Collector for Improving Lithium Anode Performance. , 2016, Nano letters.

[10]  Xiangbo Meng,et al.  Atomic Layer Deposition of LixAlyS Solid‐State Electrolytes for Stabilizing Lithium‐Metal Anodes , 2016 .

[11]  Xin-Bing Cheng,et al.  Dendrite‐Free Lithium Deposition Induced by Uniformly Distributed Lithium Ions for Efficient Lithium Metal Batteries , 2016, Advanced materials.

[12]  Satoshi Hori,et al.  High-power all-solid-state batteries using sulfide superionic conductors , 2016, Nature Energy.

[13]  Yayuan Liu,et al.  Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode , 2016, Nature Communications.

[14]  Yu-Guo Guo,et al.  An Artificial Solid Electrolyte Interphase Layer for Stable Lithium Metal Anodes , 2016, Advanced materials.

[15]  Yi Cui,et al.  Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating , 2016, Proceedings of the National Academy of Sciences.

[16]  Hyun-Wook Lee,et al.  Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth , 2016, Nature Energy.

[17]  Hyun-Wook Lee,et al.  Erratum: Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes , 2016, Nature Energy.

[18]  Y. Chiang,et al.  Identification of Li-Ion Battery SEI Compounds through (7)Li and (13)C Solid-State MAS NMR Spectroscopy and MALDI-TOF Mass Spectrometry. , 2016, ACS applied materials & interfaces.

[19]  Donald J. Siegel,et al.  Elastic Properties of the Solid Electrolyte Li7La3Zr2O12 (LLZO) , 2016 .

[20]  Zhenan Bao,et al.  Fast and reversible thermoresponsive polymer switching materials for safer batteries , 2016, Nature Energy.

[21]  Z. Deng,et al.  Elastic Properties of Alkali Superionic Conductor Electrolytes from First Principles Calculations , 2016 .

[22]  Lynden A. Archer,et al.  A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles , 2015, Nature Communications.

[23]  Aravindaraj G. Kannan,et al.  Effective Suppression of Dendritic Lithium Growth Using an Ultrathin Coating of Nitrogen and Sulfur Codoped Graphene Nanosheets on Polymer Separator for Lithium Metal Batteries. , 2015, ACS applied materials & interfaces.

[24]  Yizhou Zhu,et al.  Origin of Outstanding Stability in the Lithium Solid Electrolyte Materials: Insights from Thermodynamic Analyses Based on First-Principles Calculations. , 2015, ACS applied materials & interfaces.

[25]  Ya‐Xia Yin,et al.  Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes , 2015, Nature Communications.

[26]  M. Toney,et al.  Storage Capacity and Cycling Stability in Ge Anodes: Relationship of Anode Structure and Cycling Rate , 2015 .

[27]  Taeeun Yim,et al.  Self-Extinguishing Lithium Ion Batteries Based on Internally Embedded Fire-Extinguishing Microcapsules with Temperature-Responsiveness. , 2015, Nano letters.

[28]  Winfried W. Wilcke,et al.  Flexible Ion‐Conducting Composite Membranes for Lithium Batteries , 2015 .

[29]  Guangyuan Zheng,et al.  The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth , 2015, Nature Communications.

[30]  Dong Jin Lee,et al.  A simple composite protective layer coating that enhances the cycling stability of lithium metal batteries , 2015 .

[31]  Xiaogang Han,et al.  Next-Generation Lithium Metal Anode Engineering via Atomic Layer Deposition. , 2015, ACS nano.

[32]  Guangyuan Zheng,et al.  Polymer nanofiber-guided uniform lithium deposition for battery electrodes. , 2015, Nano letters.

[33]  Joo-Seong Kim,et al.  Controlled Lithium Dendrite Growth by a Synergistic Effect of Multilayered Graphene Coating and an Electrolyte Additive , 2015 .

[34]  Hubert A. Gasteiger,et al.  Operando electron paramagnetic resonance spectroscopy – formation of mossy lithium on lithium anodes during charge–discharge cycling , 2015 .

[35]  Martin Winter,et al.  Electrochemical in situ investigations of SEI and dendrite formation on the lithium metal anode. , 2015, Physical chemistry chemical physics : PCCP.

[36]  J. Sullivan,et al.  Lithium Electrodeposition Dynamics in Aprotic Electrolyte Observed in Situ via Transmission Electron Microscopy. , 2015, ACS nano.

[37]  Wei Liu,et al.  Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers. , 2015, Nano letters.

[38]  J. Tu,et al.  An ex-situ nitridation route to synthesize Li3N-modified Li anodes for lithium secondary batteries , 2015 .

[39]  Nina Balke,et al.  Nanoscale imaging of fundamental li battery chemistry: solid-electrolyte interphase formation and preferential growth of lithium metal nanoclusters. , 2015, Nano letters.

[40]  O. Borodin,et al.  High rate and stable cycling of lithium metal anode , 2015, Nature Communications.

[41]  Myung-Hyun Ryou,et al.  Mechanical Surface Modification of Lithium Metal: Towards Improved Li Metal Anode Performance by Directed Li Plating , 2015 .

[42]  Xin-bo Zhang,et al.  Artificial Protection Film on Lithium Metal Anode toward Long-Cycle-Life Lithium-Oxygen Batteries. , 2015, Advanced materials.

[43]  Selena M. Russell,et al.  Dendrite-free lithium deposition with self-aligned nanorod structure. , 2014, Nano letters.

[44]  Hui Wu,et al.  Improving battery safety by early detection of internal shorting with a bifunctional separator , 2014, Nature Communications.

[45]  Christopher J. Ellison,et al.  New battery strategies with a polymer/Al2O3 separator , 2014 .

[46]  S. Chu,et al.  Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode. , 2014, Nano letters.

[47]  J. Steiger,et al.  Mechanisms of dendritic growth investigated by in situ light microscopy during electrodeposition and dissolution of lithium , 2014 .

[48]  Yiyang Li,et al.  Current-induced transition from particle-by-particle to concurrent intercalation in phase-separating battery electrodes. , 2014, Nature materials.

[49]  Venkataraman Thangadurai,et al.  Garnet-Type Solid-State Fast Li Ion Conductors for Li Batteries: Critical Review , 2014 .

[50]  Guangyuan Zheng,et al.  Interconnected hollow carbon nanospheres for stable lithium metal anodes. , 2014, Nature nanotechnology.

[51]  N. Dudney,et al.  Direct Visualization of Solid Electrolyte Interphase Formation in Lithium-Ion Batteries with In Situ Electrochemical Transmission Electron Microscopy , 2014, Microscopy and Microanalysis.

[52]  Lynden A Archer,et al.  Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. , 2014, Nature materials.

[53]  M. Winter,et al.  Coated Lithium Powder (CLiP) Electrodes for Lithium‐Metal Batteries , 2014 .

[54]  H. Xin,et al.  Visualization of electrode-electrolyte interfaces in LiPF6/EC/DEC electrolyte for lithium ion batteries via in situ TEM. , 2014, Nano letters.

[55]  Cheol‐Min Park,et al.  Metallic Anodes for Next Generation Secondary Batteries , 2014 .

[56]  Ilke Arslan,et al.  Direct visualization of initial SEI morphology and growth kinetics during lithium deposition by in situ electrochemical transmission electron microscopy. , 2014, Chemical communications.

[57]  Ji‐Guang Zhang,et al.  Lithium metal anodes for rechargeable batteries , 2014 .

[58]  A. MacDowell,et al.  Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes. , 2014, Nature materials.

[59]  Zhenan Bao,et al.  Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries. , 2013, Nature chemistry.

[60]  Dan Zhao,et al.  Reversibility of anodic lithium in rechargeable lithium–oxygen batteries , 2013, Nature Communications.

[61]  A. Hayashi,et al.  Sulfide Solid Electrolyte with Favorable Mechanical Property for All-Solid-State Lithium Battery , 2013, Scientific Reports.

[62]  John B. Goodenough,et al.  The Li‐Ion Rechargeable Battery: A Perspective , 2013 .

[63]  Rachid Meziane,et al.  Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries. , 2013, Nature materials.

[64]  Jun Liu,et al.  Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. , 2013, Journal of the American Chemical Society.

[65]  Hikari Sakaebe,et al.  In-situ scanning electron microscopy observations of Li plating and stripping reactions at the lithium phosphorus oxynitride glass electrolyte/Cu interface , 2013 .

[66]  Michel Armand,et al.  A new class of Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteries , 2013, Nature Communications.

[67]  Andrew M. Minor,et al.  Electromechanical Probing of Li/Li2CO3 Core/Shell Particles in a TEM , 2013 .

[68]  Zoran Stevic,et al.  New Generation of Electric Vehicles , 2012 .

[69]  Myung-Hyun Ryou,et al.  Excellent Cycle Life of Lithium‐Metal Anodes in Lithium‐Ion Batteries with Mussel‐Inspired Polydopamine‐Coated Separators , 2012 .

[70]  J. Sakamoto,et al.  Mechanical properties of the solid Li-ion conducting electrolyte: Li0.33La0.57TiO3 , 2012, Journal of Materials Science.

[71]  Alexej Jerschow,et al.  7Li MRI of Li batteries reveals location of microstructural lithium. , 2012, Nature materials.

[72]  K. Bennell,et al.  Recent advances and perspectives , 2012 .

[73]  G. Stucky,et al.  Spatially heterogeneous carbon-fiber papers as surface dendrite-free current collectors for lithium deposition , 2012 .

[74]  B. Jang,et al.  Reviving rechargeable lithium metal batteries: enabling next-generation high-energy and high-power cells , 2012 .

[75]  A. Hexemer,et al.  Resolution of the Modulus versus Adhesion Dilemma in Solid Polymer Electrolytes for Rechargeable Lithium Metal Batteries , 2012 .

[76]  Zlatomir Živanović,et al.  The Contribution and Prospects of the Technical Development on Implementation of Electric and Hybrid Vehicles , 2012 .

[77]  Jean-Marie Tarascon,et al.  Li-O2 and Li-S batteries with high energy storage. , 2011, Nature materials.

[78]  Rebecca S. Thompson,et al.  Stabilization of lithium metal anodes using silane-based coatings , 2011 .

[79]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[80]  N. Dudney,et al.  Mechanical characterization of Lipon films using nanoindentation , 2011 .

[81]  Z. Wen,et al.  Electrochemical behaviors of a Li3N modified Li metal electrode in secondary lithium batteries , 2011 .

[82]  Yuki Kato,et al.  A lithium superionic conductor. , 2011, Nature materials.

[83]  Yang Liu,et al.  Anisotropic swelling and fracture of silicon nanowires during lithiation. , 2011, Nano letters.

[84]  John P. Sullivan,et al.  Lithium Fiber Growth on the Anode in a Nanowire Lithium Ion Battery During Charging , 2011 .

[85]  Piercarlo Mustarelli,et al.  Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives. , 2011, Chemical Society reviews.

[86]  Jian Yu Huang,et al.  In situ Observation of the Electrochemical Lithiation of a Single SnO2 Nanowire Electrode. , 2011 .

[87]  B. Dunn,et al.  Protection of lithium metal surfaces using tetraethoxysilane , 2011 .

[88]  T. Homma,et al.  In Situ Observation of Dendrite Growth of Electrodeposited Li Metal , 2010 .

[89]  P. Novák,et al.  A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries , 2010 .

[90]  Hailong Chen,et al.  In situ NMR observation of the formation of metallic lithium microstructures in lithium batteries. , 2010, Nature materials.

[91]  Yue Qi,et al.  Threefold Increase in the Young’s Modulus of Graphite Negative Electrode during Lithium Intercalation , 2010 .

[92]  Doron Aurbach,et al.  On the Surface Chemical Aspects of Very High Energy Density, Rechargeable Li–Sulfur Batteries , 2009 .

[93]  A. Stephan,et al.  Nanocomposite Polymer Electrolytes For Lithium Batteries , 2009 .

[94]  Candace K. Chan,et al.  High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.

[95]  V. Thangadurai,et al.  Fast Lithium Ion Conduction in Garnet‐Type Li7La3Zr2O12. , 2007 .

[96]  B. Dunn,et al.  Protection of lithium metal surfaces using chlorosilanes. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[97]  Moon Jeong Park,et al.  Effect of molecular weight on the mechanical and electrical properties of block copolymer electrolytes , 2007 .

[98]  K. S. Nahm,et al.  Review on composite polymer electrolytes for lithium batteries , 2006 .

[99]  O. Efimov,et al.  Lithium surface protection by polyacetylene in situ polymerization , 2006 .

[100]  J. Avery Critical review. , 2006, The Journal of the Arkansas Medical Society.

[101]  K. Tadanaga,et al.  New, Highly Ion‐Conductive Crystals Precipitated from Li2S–P2S5 Glasses , 2005 .

[102]  Charles W. Monroe,et al.  The Impact of Elastic Deformation on Deposition Kinetics at Lithium/Polymer Interfaces , 2005 .

[103]  T. Minami,et al.  Preparation of Li2S–P2S5 Amorphous Solid Electrolytes by Mechanical Milling , 2004 .

[104]  W. Yoon,et al.  Improvement in lithium cycling efficiency by using lithium powder anode , 2004 .

[105]  Kang Xu,et al.  Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. , 2004, Chemical reviews.

[106]  M. Whittingham,et al.  Lithium batteries and cathode materials. , 2004, Chemical reviews.

[107]  Makoto Ue,et al.  Effect of vinylene carbonate as additive to electrolyte for lithium metal anode , 2004 .

[108]  Charles W. Monroe,et al.  Dendrite Growth in Lithium/Polymer Systems A Propagation Model for Liquid Electrolytes under Galvanostatic Conditions , 2003 .

[109]  Minoru Inaba,et al.  Effects of Some Organic Additives on Lithium Deposition in Propylene Carbonate , 2002 .

[110]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[111]  M. Rosso,et al.  Onset of dendritic growth in lithium/polymer cells , 2001 .

[112]  Ryoji Kanno,et al.  Lithium Ionic Conductor Thio-LISICON: The Li2 S ­ GeS2 ­ P 2 S 5 System , 2001 .

[113]  N. Sottos,et al.  Autonomic healing of polymer composites , 2001, Nature.

[114]  Doron Aurbach,et al.  Micromorphological Studies of Lithium Electrodes in Alkyl Carbonate Solutions Using in Situ Atomic Force Microscopy , 2000 .

[115]  M. Doeff,et al.  Slow recrystallization in the polymer electrolyte system poly(ethylene oxide)n-LiN(CF3SO2)2 , 2000 .

[116]  D. Aurbach Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries , 2000 .

[117]  N. Dudney Addition of a thin-film inorganic solid electrolyte (Lipon) as a protective film in lithium batteries with a liquid electrolyte , 2000 .

[118]  V. N. Plakhotnik,et al.  Electrolytes for Lithium Batteries on the Basis of Complex Fluorides and Aprotic Media , 2000 .

[119]  J.-N. Chazalviel,et al.  Dendritic growth mechanisms in lithium/polymer cells , 1999 .

[120]  K. Kanamura,et al.  Surface Condition Changes in Lithium Metal Deposited in Nonaqueous Electrolyte Containing HF by Dissolution‐Deposition Cycles , 1999 .

[121]  K. Naoi,et al.  Modification of the Lithium Metal Surface by Nonionic Polyether Surfactants: Quartz Crystal Microbalance Studies , 1998 .

[122]  Shinzo Kohjiya,et al.  High ionic conductivity of new polymer electrolytes based on high molecular weight polyether comb polymers , 1998 .

[123]  W. Meyer,et al.  Polymer electrolytes for lithium-ion batteries. , 1998, Advanced materials.

[124]  K. Kanamura,et al.  Electrochemical deposition of lithium metal in nonaqueous electrolyte containing (C2H5)4NF(HF)4 additive , 1998 .

[125]  Z. Takehara Future prospects of the lithium metal anode , 1997 .

[126]  E. Peled,et al.  Advanced Model for Solid Electrolyte Interphase Electrodes in Liquid and Polymer Electrolytes , 1997 .

[127]  T. Osaka,et al.  Surface characterization of electrodeposited lithium anode with enhanced cycleability obtained by CO{sub 2} addition , 1997 .

[128]  C. Mak,et al.  Quartz crystal microbalance studies of disorder-induced lubrication , 1997 .

[129]  D. Aurbach,et al.  The Study of Electrolyte Solutions Based on Ethylene and Diethyl Carbonates for Rechargeable Li Batteries I . Li Metal Anodes , 1995 .

[130]  K. Brandt,et al.  Historical development of secondary lithium batteries , 1994 .

[131]  D. Aurbach,et al.  The Surface Chemistry of Lithium Electrodes in Alkyl Carbonate Solutions , 1994 .

[132]  Takashi Uchida,et al.  High ionic conductivity in lithium lanthanum titanate , 1993 .

[133]  Martin Winter,et al.  Inorganic film-forming electrolyte additives improving the cycling behaviour of metallic lithium electrodes and the self-discharge of carbon—lithium electrodes , 1993 .

[134]  J. D. Robertson,et al.  Electrical properties of amorphous lithium electrolyte thin films , 1992 .

[135]  M. Morita,et al.  ac imepedance behaviour of lithium electrode in organic electrolyte solutions containing additives , 1992 .

[136]  D. Aurbach,et al.  Solutions of LiAsF6 in 1,3-dioxolane for secondary lithium batteries , 1992 .

[137]  J. Chazalviel,et al.  Electrochemical aspects of the generation of ramified metallic electrodeposits. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[138]  Jeff Dahn,et al.  Studies of Lithium Intercalation into Carbons Using Nonaqueous Electrochemical Cells , 1990 .

[139]  Y. Sadaoka,et al.  Ionic Conductivity of Solid Electrolytes Based on Lithium Titanium Phosphate. , 1990 .

[140]  Doron Aurbach,et al.  Identification of Surface Films Formed on Lithium in Propylene Carbonate Solutions , 1987 .

[141]  K. Abraham,et al.  LONG CYCLE-LIFE SECONDARY LITHIUM CELLS UTILIZING TETRAHYDROFURAN , 1984 .

[142]  A. Rabenau Lithium nitride and related materials case study of the use of modern solid state research techniques , 1982 .

[143]  Emanuel Peled,et al.  The Electrochemical Behavior of Alkali and Alkaline Earth Metals in Nonaqueous Battery Systems—The Solid Electrolyte Interphase Model , 1979 .

[144]  A. Rabenau,et al.  Ionic conductivity in Li3N single crystals , 1977 .

[145]  E. P. Lewis In perspective. , 1972, Nursing outlook.

[146]  J. Bockris,et al.  Modern Aspects of Electrochemistry, No. 2 , 1960 .