Live-cell imaging of tumor proteolysis: impact of cellular and non-cellular microenvironment.

Our laboratory has had a longstanding interest in how the interactions between tumors and their microenvironment affect malignant progression. Recently, we have focused on defining the proteolytic pathways that function in the transition of breast cancer from the pre-invasive lesions of ductal carcinoma in situ (DCIS) to invasive ductal carcinomas (IDCs). We use live-cell imaging to visualize, localize and quantify proteolysis as it occurs in real-time and thereby have established roles for lysosomal cysteine proteases both pericellularly and intracellularly in tumor proteolysis. To facilitate these studies, we have developed and optimized 3D organotypic co-culture models that recapitulate the in vivo interactions of mammary epithelial cells or tumor cells with stromal and inflammatory cells. Here we will discuss the background that led to our present studies as well as the techniques and models that we employ. This article is part of a Special Issue entitled: Proteolysis 50 years after the discovery of lysosome.

[1]  A. Klein-Szanto,et al.  Transformation of Human Breast Epithelial Cells by c‐Ha‐ras Oncogene , 1991, Molecular carcinogenesis.

[2]  X. Puente,et al.  Human and mouse proteases: a comparative genomic approach , 2003, Nature Reviews Genetics.

[3]  Y. DeClerck Interactions between tumour cells and stromal cells and proteolytic modification of the extracellular matrix by metalloproteinases in cancer. , 2000, European journal of cancer.

[4]  C. López-Otín,et al.  Loss of collagenase-2 confers increased skin tumor susceptibility to male mice , 2003, Nature Genetics.

[5]  R. Gillies,et al.  Vacuolar-type H(+)-ATPases are functionally expressed in plasma membranes of human tumor cells. , 1993, The American journal of physiology.

[6]  C. López-Otín,et al.  Emerging roles of proteases in tumour suppression , 2007, Nature Reviews Cancer.

[7]  S. Stylli,et al.  Invadopodia: At the cutting edge of tumour invasion , 2008, Journal of Clinical Neuroscience.

[8]  Bonnie F. Sloane,et al.  Phorbol Ester Activation of a Proteolytic Cascade Capable of Activating Latent Transforming Growth Factor-β , 2002, The Journal of Biological Chemistry.

[9]  M. Bissell,et al.  The dominance of the microenvironment in breast and ovarian cancer. , 2002, Seminars in cancer biology.

[10]  Roberto Buccione,et al.  Foot and mouth: podosomes, invadopodia and circular dorsal ruffles , 2004, Nature Reviews Molecular Cell Biology.

[11]  Bonnie F. Sloane,et al.  Mutant K-ras regulates cathepsin B localization on the surface of human colorectal carcinoma cells. , 2003, Neoplasia.

[12]  E. Petricoin,et al.  Adipocyte-derived collagen VI affects early mammary tumor progression in vivo, demonstrating a critical interaction in the tumor/stroma microenvironment. , 2005, The Journal of clinical investigation.

[13]  E. Rofstad,et al.  Acidic extracellular pH promotes experimental metastasis of human melanoma cells in athymic nude mice. , 2006, Cancer research.

[14]  M. Shekhar,et al.  Host microenvironment in breast cancer development: Extracellular matrix–stromal cell contribution to neoplastic phenotype of epithelial cells in the breast , 2003, Breast Cancer Research.

[15]  Stephen J. Weiss,et al.  Protease-dependent versus -independent cancer cell invasion programs: three-dimensional amoeboid movement revisited , 2009, The Journal of cell biology.

[16]  C. Gialeli,et al.  Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting , 2011, The FEBS journal.

[17]  B. Nielsen,et al.  Stromal cells associated with early invasive foci in human mammary ductal carcinoma in situ coexpress urokinase and urokinase receptor , 2007, International journal of cancer.

[18]  Bonnie F. Sloane,et al.  Lysosomal cathepsin B participates in the podosome-mediated extracellular matrix degradation and invasion via secreted lysosomes in v-Src fibroblasts. , 2008, Cancer research.

[19]  O. Vasiljeva,et al.  Tumor cell-derived and macrophage-derived cathepsin B promotes progression and lung metastasis of mammary cancer. , 2006, Cancer research.

[20]  R. Stern,et al.  CD44 Interaction with Na+-H+ Exchanger (NHE1) Creates Acidic Microenvironments Leading to Hyaluronidase-2 and Cathepsin B Activation and Breast Tumor Cell Invasion* , 2004, Journal of Biological Chemistry.

[21]  S. Okushiba,et al.  Overexpression of caveolin‐1 in esophageal squamous cell carcinoma correlates with lymph node metastasis and pathologic stage , 2002, Cancer.

[22]  M. Walker,et al.  Endo180 expression with cofunctional partners MT1-MMP and uPAR-uPA is correlated with prostate cancer progression. , 2009, European journal of cancer.

[23]  I. M. Neiman,et al.  [Inflammation and cancer]. , 1974, Patologicheskaia fiziologiia i eksperimental'naia terapiia.

[24]  W. Sessa,et al.  Distinct Roles of Endothelial and Adipocyte Caveolin-1 in Macrophage Infiltration and Adipose Tissue Metabolic Activity , 2011, Diabetes.

[25]  F. Miller,et al.  MCF10AT: a model for the evolution of cancer from proliferative breast disease. , 1996, The American journal of pathology.

[26]  Jayanta Debnath,et al.  Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. , 2003, Methods.

[27]  Mina J Bissell,et al.  Regulation of mammary gland branching morphogenesis by the extracellular matrix and its remodeling enzymes , 2003, Breast Cancer Research.

[28]  J. Pollard,et al.  Colony stimulating factor-1 is required to recruit macrophages into the mammary gland to facilitate mammary ductal outgrowth. , 2002, Developmental biology.

[29]  Gregory S Karczmar,et al.  MRI of the tumor microenvironment , 2002, Journal of magnetic resonance imaging : JMRI.

[30]  T. Acott,et al.  Extracellular matrix turnover and outflow resistance. , 2009, Experimental eye research.

[31]  Bonnie F. Sloane,et al.  Caveolin-1 mediates the expression and localization of cathepsin B, pro-urokinase plasminogen activator and their cell-surface receptors in human colorectal carcinoma cells , 2005, Journal of Cell Science.

[32]  Zena Werb,et al.  Stromal Effects on Mammary Gland Development and Breast Cancer , 2002, Science.

[33]  H. Malmgren,et al.  The Histological Distribution of Proteinase and Peptidase Activity in Solid Tumor Transplants: A Histochemical Study of the Enzymic Characteristics of the Different Tumor Cell Types , 1960, Acta radiologica. Supplementum.

[34]  Bonnie F. Sloane,et al.  Imaging Proteolysis by Living Human Glioma Cells , 2001 .

[35]  Bonnie F. Sloane,et al.  Properties of a plasma membrane-associated cathepsin B-like cysteine proteinase in metastatic B16 melanoma variants. , 1987, Cancer research.

[36]  R. Weinberg,et al.  Heterotypic signaling between epithelial tumor cells and fibroblasts in carcinoma formation. , 2001, Experimental cell research.

[37]  K. Hamada,et al.  Downregulation of uPARAP mediates cytoskeletal rearrangements and decreases invasion and migration properties in glioma cells , 2011, Journal of Neuro-Oncology.

[38]  Christopher M. Overall,et al.  Validating matrix metalloproteinases as drug targets and anti-targets for cancer therapy , 2006, Nature Reviews Cancer.

[39]  M. Kraus,et al.  Implications of acidic tumor microenvironment for neoplastic growth and cancer treatment: a computer analysis. , 1996, Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine.

[40]  P. Loke,et al.  Proteases in parasitic diseases. , 2006, Annual review of pathology.

[41]  Kami Kim,et al.  Location, Location, Location: Trafficking and Function of Secreted Proteases of Toxoplasma and Plasmodium , 2004, Traffic.

[42]  J. Pollard,et al.  Macrophages regulate the angiogenic switch in a mouse model of breast cancer. , 2006, Cancer research.

[43]  C. Rao,et al.  Overexpression of caveolin-1 in experimental colon adenocarcinomas and human colon cancer cell lines. , 2004, Oncology reports.

[44]  T. Jacks,et al.  Technologically advanced cancer modeling in mice. , 2002, Current opinion in genetics & development.

[45]  Anne Vincent-Salomon,et al.  Epithelial–mesenchymal transition in breast cancer development , 2003 .

[46]  Bonnie F. Sloane,et al.  Bicarbonate increases tumor pH and inhibits spontaneous metastases. , 2009, Cancer research.

[47]  W. Jiang,et al.  Type II transmembrane serine protease (TTSP) deregulation in cancer. , 2011, Frontiers in bioscience.

[48]  Shuhei Yoshida,et al.  Lipid rafts and caveolin-1 are required for invadopodia formation and extracellular matrix degradation by human breast cancer cells. , 2009, Cancer research.

[49]  D. Edwards The cancer degradome : proteases and cancer biology , 2008 .

[50]  Sun-Ja Kim,et al.  Increased expression of caveolin‐1 and microvessel density correlates with metastasis and poor prognosis in clear cell renal cell carcinoma , 2004, BJU international.

[51]  Bonnie F. Sloane,et al.  3D/4D functional imaging of tumor-associated proteolysis: impact of microenvironment. , 2012, Methods in enzymology.

[52]  John Condeelis,et al.  Macrophages: Obligate Partners for Tumor Cell Migration, Invasion, and Metastasis , 2006, Cell.

[53]  A. Elias,et al.  Multistep tumorigenesis and the microenvironment , 2004, Breast Cancer Research.

[54]  R. McLendon,et al.  Acidic stress promotes a glioma stem cell phenotype , 2011, Cell Death and Differentiation.

[55]  Philippe Chavrier,et al.  Matrix invasion by tumour cells: a focus on MT1-MMP trafficking to invadopodia , 2009, Journal of Cell Science.

[56]  Bonnie F. Sloane,et al.  p21-Activated kinase 1 coordinates aberrant cell survival and pericellular proteolysis in a three-dimensional culture model for premalignant progression of human breast cancer. , 2008, Neoplasia.

[57]  Bonnie F. Sloane,et al.  Functional Imaging of Proteolysis: Stromal and Inflammatory Cells Increase Tumor Proteolysis , 2003 .

[58]  Jacco van Rheenen,et al.  Collagen-based cell migration models in vitro and in vivo. , 2009, Seminars in cell & developmental biology.

[59]  M. Roizen,et al.  Hallmarks of Cancer: The Next Generation , 2012 .

[60]  M. Lisanti,et al.  Caveolin-1, a putative tumour suppressor gene. , 2001, Biochemical Society transactions.

[61]  L. Matrisian,et al.  The other side of MMPs: Protective roles in tumor progression , 2007, Cancer and Metastasis Reviews.

[62]  H. Haller,et al.  Urokinase-receptor-mediated phenotypic changes in vascular smooth muscle cells require the involvement of membrane rafts. , 2009, The Biochemical journal.

[63]  C. Peters,et al.  Deficiency for the cysteine protease cathepsin L promotes tumor progression in mouse epidermis , 2010, Oncogene.

[64]  Mina J Bissell,et al.  Modeling dynamic reciprocity: engineering three-dimensional culture models of breast architecture, function, and neoplastic transformation. , 2005, Seminars in cancer biology.

[65]  B. Nielsen,et al.  The myofibroblast is the predominant plasminogen activator inhibitor-1-expressing cell type in human breast carcinomas. , 2003, The American journal of pathology.

[66]  H. Yamaguchi,et al.  Membrane lipids in invadopodia and podosomes: Key structures for cancer invasion and metastasis , 2010, Oncotarget.

[67]  J. Haveman,et al.  The relevance of tumour pH to the treatment of malignant disease. , 1984, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[68]  R. Knuechel,et al.  Tumor‐associated fibroblasts recruit blood monocytes into tumor tissue , 2003, European journal of immunology.

[69]  B. Finlay,et al.  The caspase-1 inflammasome: a pilot of innate immune responses. , 2008, Cell host & microbe.

[70]  B. O'connor,et al.  Seprase: an overview of an important matrix serine protease. , 2008, Biochimica et biophysica acta.

[71]  Meenhard Herlyn,et al.  Axis of evil: molecular mechanisms of cancer metastasis , 2003, Oncogene.

[72]  K. Jeong,et al.  Metabolic consequences of a reversed pH gradient in rat tumors. , 1994, Cancer research.

[73]  J. Hodgson,et al.  TIMP-1 Alters Susceptibility to Carcinogenesis , 2004, Cancer Research.

[74]  A. Poole,et al.  Differences in secretion of the proteinase cathepsin B at the edges of human breast carcinomas and fibroadenomas , 1978, Nature.

[75]  Bonnie F. Sloane,et al.  Live-cell imaging demonstrates extracellular matrix degradation in association with active cathepsin B in caveolae of endothelial cells during tube formation. , 2009, Experimental cell research.

[76]  O. Warburg,et al.  THE METABOLISM OF TUMORS IN THE BODY , 1927, The Journal of general physiology.

[77]  M. Schmitt,et al.  Interdependence of kallikrein-related peptidases in proteolytic networks , 2010, Biological chemistry.

[78]  H. Rochefort,et al.  The 52-kDa estrogen-induced protein secreted by MCF7 cells is a lysosomal acidic protease. , 1986, Biochemical and biophysical research communications.

[79]  A. Recklies,et al.  Secretion of proteinases from malignant and nonmalignant human breast tissue. , 1980, Cancer research.

[80]  Elise C. Kohn,et al.  The microenvironment of the tumour–host interface , 2001, Nature.

[81]  J. Pollard,et al.  Distinct role of macrophages in different tumor microenvironments. , 2006, Cancer research.

[82]  Bonnie F. Sloane,et al.  Cell surface complex of cathepsin B/annexin II tetramer in malignant progression. , 2000, Biochimica et biophysica acta.

[83]  M. Robinson,et al.  Caveolin-1 expression is associated with high-grade bladder cancer. , 2001, Urology.

[84]  Sarah Boyd,et al.  PMAP: databases for analyzing proteolytic events and pathways , 2008, Nucleic Acids Res..

[85]  R. Williamson,et al.  Role of TIMPs (tissue inhibitors of metalloproteinases) in pericellular proteolysis: the specificity is in the detail. , 2003, Biochemical Society symposium.

[86]  H. Kobayashi,et al.  Effects of membrane-associated cathepsin B on the activation of receptor-bound prourokinase and subsequent invasion of reconstituted basement membranes. , 1993, Biochimica et biophysica acta.

[87]  G. Stenbeck Formation and function of the ruffled border in osteoclasts. , 2002, Seminars in cell & developmental biology.

[88]  A. Krüger,et al.  Avoiding spam in the proteolytic internet: future strategies for anti-metastatic MMP inhibition. , 2010, Biochimica et biophysica acta.

[89]  Jayanta Debnath,et al.  The Role of Apoptosis in Creating and Maintaining Luminal Space within Normal and Oncogene-Expressing Mammary Acini , 2002, Cell.

[90]  Kornelia Polyak,et al.  Do Myoepithelial Cells Hold the Key for Breast Tumor Progression? , 2005, Journal of Mammary Gland Biology and Neoplasia.

[91]  M. Gottesman,et al.  The major excreted protein of transformed fibroblasts is an activable acid-protease. , 1986, The Journal of biological chemistry.

[92]  Bonnie F. Sloane,et al.  Pericellular cathepsin B and malignant progression , 2003, Cancer and Metastasis Reviews.

[93]  Y. Lazebnik,et al.  Cell fusion: a hidden enemy? , 2003, Cancer cell.

[94]  Bonnie F. Sloane,et al.  Pericellular pH affects distribution and secretion of cathepsin B in malignant cells. , 1994, Cancer research.

[95]  K. Almholt,et al.  Cancer invasion and tissue remodeling: common themes in proteolytic matrix degradation. , 1998, Current opinion in cell biology.

[96]  Bonnie F. Sloane,et al.  Cell-surface cathepsin B: understanding its functional significance. , 2003, Current topics in developmental biology.

[97]  B. Nielsen,et al.  Intracellular collagen degradation mediated by uPARAP/Endo180 is a major pathway of extracellular matrix turnover during malignancy , 2005, The Journal of cell biology.

[98]  B. Nielsen,et al.  Extracellular Proteolysis in Transgenic Mouse Models of Breast Cancer , 2007, Journal of Mammary Gland Biology and Neoplasia.

[99]  S. Fine,et al.  Elevated expression of caveolin-1 in adenocarcinoma of the colon. , 2001, American journal of clinical pathology.

[100]  Natarajan Raghunand,et al.  In vivo imaging of extracellular pH using 1H MRSI , 1999, Magnetic resonance in medicine.

[101]  L. Coussens,et al.  Protective role of cathepsin L in mouse skin carcinogenesis , 2012, Molecular carcinogenesis.

[102]  S. Zucker,et al.  Critical appraisal of the use of matrix metalloproteinase inhibitors in cancer treatment , 2000, Oncogene.

[103]  Z. Werb,et al.  New functions for the matrix metalloproteinases in cancer progression , 2002, Nature Reviews Cancer.

[104]  A. Lardner The effects of extracellular pH on immune function , 2001, Journal of leukocyte biology.

[105]  P. Saftig,et al.  Lysosome biogenesis and lysosomal membrane proteins: trafficking meets function , 2009, Nature Reviews Molecular Cell Biology.

[106]  Bonnie F. Sloane,et al.  Phorbol ester activation of a proteolytic cascade capable of activating latent TGF-β: A process initiated by the exocytosis of cathepsin B , 2002 .

[107]  Bonnie F. Sloane,et al.  Human Procathepsin B Interacts with the Annexin II Tetramer on the Surface of Tumor Cells* , 2000, The Journal of Biological Chemistry.

[108]  M. Kattan,et al.  Elevated expression of caveolin is associated with prostate and breast cancer. , 1998, Clinical cancer research : an official journal of the American Association for Cancer Research.

[109]  J. Pollard,et al.  Requirement of macrophages and eosinophils and their cytokines/chemokines for mammary gland development , 2002, Breast Cancer Research.

[110]  Mina J Bissell,et al.  Modeling tissue-specific signaling and organ function in three dimensions , 2003, Journal of Cell Science.

[111]  D. Cunningham,et al.  Matrix metalloproteinase inhibitors--an emphasis on gastrointestinal malignancies. , 2003, Critical reviews in oncology/hematology.

[112]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[113]  Neil D. Rawlings,et al.  MEROPS: the peptidase database , 2009, Nucleic Acids Res..

[114]  R. Buccione,et al.  Aiming for invadopodia: organizing polarized delivery at sites of invasion. , 2010, Trends in cell biology.

[115]  Stéphanie Balor,et al.  Macrophage podosomes go 3D. , 2011, European journal of cell biology.

[116]  M. Ebert,et al.  Caveats of caveolin-1 in cancer progression. , 2008, Cancer letters.

[117]  F. Gauffre,et al.  Matrix Architecture Dictates Three-Dimensional Migration Modes of Human Macrophages: Differential Involvement of Proteases and Podosome-Like Structures , 2009, The Journal of Immunology.

[118]  Bonnie F. Sloane,et al.  Inhibition of cathepsin B activity attenuates extracellular matrix degradation and inflammatory breast cancer invasion , 2011, Breast Cancer Research.

[119]  F. Saltel,et al.  Actin cytoskeletal organisation in osteoclasts: a model to decipher transmigration and matrix degradation. , 2008, European journal of cell biology.

[120]  C. López-Otín,et al.  Expanding the complexity of the human degradome: polyserases and their tandem serine protease domains. , 2007, Frontiers in bioscience : a journal and virtual library.

[121]  M. Barcellos-Hoff,et al.  The not-so innocent bystander: the microenvironment as a therapeutic target in cancer , 2003, Expert opinion on therapeutic targets.

[122]  G. Taraboletti,et al.  Cathepsin B mediates the pH-dependent proinvasive activity of tumor-shed microvesicles. , 2008, Neoplasia.

[123]  Lien Wp,et al.  Imaging matrix metalloproteinase expression in tumors. , 2003 .

[124]  Bonnie F. Sloane,et al.  Cathepsin B and its role(s) in cancer progression. , 2003, Biochemical Society symposium.

[125]  R. Hill,et al.  Glucose starvation and acidosis: effect on experimental metastatic potential, DNA content and MTX resistance of murine tumour cells. , 1991, British Journal of Cancer.

[126]  B. Fingleton,et al.  Matrix Metalloproteinase Inhibitors and Cancer—Trials and Tribulations , 2002, Science.

[127]  C. Isacke,et al.  Membrane type-1 matrix metalloproteinase activity is regulated by the endocytic collagen receptor Endo180 , 2009, Journal of Cell Science.

[128]  I. Fidler,et al.  Acidic pH-induced elevation in interleukin 8 expression by human ovarian carcinoma cells. , 2000, Cancer research.

[129]  M. Drab,et al.  Loss of Caveolae, Vascular Dysfunction, and Pulmonary Defects in Caveolin-1 Gene-Disrupted Mice , 2001, Science.

[130]  S. Zucker,et al.  Selective matrix metalloproteinase (MMP) inhibitors in cancer therapy: Ready for prime time? , 2009, Cancer biology & therapy.

[131]  Bonnie F. Sloane,et al.  Imaging proteolysis by living human breast cancer cells. , 2000, Neoplasia.

[132]  Jayanta Debnath,et al.  Modelling glandular epithelial cancers in three-dimensional cultures , 2005, Nature Reviews Cancer.

[133]  D. Hanahan,et al.  The Hallmarks of Cancer , 2000, Cell.

[134]  Y. Okamoto,et al.  Caveolin-1 mediates tumor cell migration and invasion and its regulation by miR-133a in head and neck squamous cell carcinoma. , 2010, International journal of oncology.

[135]  Andrew V. Nguyen,et al.  Colony-Stimulating Factor 1 Promotes Progression of Mammary Tumors to Malignancy , 2001, The Journal of experimental medicine.

[136]  S. Wiseman,et al.  Caveolin-1 in tumor progression: the good, the bad and the ugly , 2008, Cancer and Metastasis Reviews.

[137]  D. Glick The histological distribution of proteinase and peptidase activity in solid tumor transplants: By B. Sylvén and H. Malmgren. Acta Radiologica, Suppl. 154, Stockholm, 1957. 124 pp. Price 30 Sw. Kr , 1958 .

[138]  G. Sledge,et al.  Activity of biphenyl matrix metalloproteinase inhibitor BAY 12-9566 in a human breast cancer orthotopic model , 2004, Clinical & Experimental Metastasis.

[139]  R. Jain,et al.  Acidic Extracellular pH Induces Vascular Endothelial Growth Factor (VEGF) in Human Glioblastoma Cells via ERK1/2 MAPK Signaling Pathway , 2002, The Journal of Biological Chemistry.

[140]  D. Waisman,et al.  S100A10, annexin A2, and annexin a2 heterotetramer as candidate plasminogen receptors. , 2005, Frontiers in bioscience : a journal and virtual library.

[141]  R. Khokha,et al.  The Role of Tissue Inhibitors of Metalloproteinases in Tumorigenesis and Metastasis , 2008, Critical reviews in clinical laboratory sciences.

[142]  L. Matrisian,et al.  Molecular imaging of proteolytic activity in cancer , 2003, Journal of cellular biochemistry.

[143]  B. Hempstead,et al.  Annexin II regulates fibrin homeostasis and neoangiogenesis in vivo. , 2004, The Journal of clinical investigation.

[144]  K. Bakunts,et al.  Vacuolar H+-ATPase in human breast cancer cells with distinct metastatic potential: distribution and functional activity. , 2004, American journal of physiology. Cell physiology.

[145]  J. Rak,et al.  Host microenvironment in breast cancer development: Inflammatory and immune cells in tumour angiogenesis and arteriogenesis , 2003, Breast Cancer Research.

[146]  Robert J Gillies,et al.  Contributions of cell metabolism and H+ diffusion to the acidic pH of tumors. , 2003, Neoplasia.

[147]  Fibroblast hepatocyte growth factor promotes invasion of human mammary ductal carcinoma in situ. , 2009, Cancer research.

[148]  汪翼,et al.  Caveolin-1和肿瘤 , 2004 .

[149]  Bonnie F. Sloane,et al.  Cysteine cathepsins: multifunctional enzymes in cancer , 2006, Nature Reviews Cancer.

[150]  Bonnie F. Sloane,et al.  Molecular Regulation of Human Cathepsin B: Implication in Pathologies , 2003, Biological chemistry.

[151]  G. Beznoussenko,et al.  Invadopodia biogenesis is regulated by caveolin‐mediated modulation of membrane cholesterol levels , 2009, Journal of cellular and molecular medicine.

[152]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[153]  P. Rosenthal,et al.  Cysteine proteases of malaria parasites. , 2004, International journal for parasitology.

[154]  J. Joyce,et al.  Proteolytic networks in cancer. , 2011, Trends in cell biology.

[155]  J. Abbruzzese,et al.  Regulation of vascular endothelial growth factor expression by acidosis in human cancer cells , 2001, Oncogene.

[156]  Jiyun V Kim,et al.  Annexin II: a plasminogen-plasminogen activator co-receptor. , 2002, Frontiers in bioscience : a journal and virtual library.

[157]  Rakesh K. Jain,et al.  Interstitial pH and pO2 gradients in solid tumors in vivo: High-resolution measurements reveal a lack of correlation , 1997, Nature Medicine.

[158]  Christopher M Overall,et al.  Tumour microenvironment - opinion: validating matrix metalloproteinases as drug targets and anti-targets for cancer therapy. , 2006, Nature reviews. Cancer.

[159]  P. Sträuli,et al.  Immunofluorescent studies on the occurrence of cathepsin B1 at tumor cell surfaces , 1975, Virchows Archiv. B, Cell pathology.

[160]  W. Muller,et al.  Ets2-dependent microenvironmental support of mouse mammary tumors , 2005, Oncogene.

[161]  T. Jacks,et al.  Cancer Modeling in the Modern Era Progress and Challenges , 2002, Cell.

[162]  D. Turk,et al.  Structural and functional aspects of papain-like cysteine proteinases and their protein inhibitors. , 1997, Biological chemistry.

[163]  F. Blasi,et al.  The urokinase receptor: Focused cell surface proteolysis, cell adhesion and signaling , 2010, FEBS letters.

[164]  R. Gillies,et al.  Tumorigenic 3T3 cells maintain an alkaline intracellular pH under physiological conditions. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[165]  Sheila J. Jones,et al.  Impaired osteoclastic bone resorption leads to osteopetrosis in cathepsin-K-deficient mice. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[166]  K. Almholt,et al.  Stromal cell involvement in cancer. , 2003, Recent results in cancer research. Fortschritte der Krebsforschung. Progres dans les recherches sur le cancer.

[167]  Fred R. Miller,et al.  Malignant MCF10CA1 Cell Lines Derived from Premalignant Human Breast Epithelial MCF10AT Cells , 2004, Breast Cancer Research and Treatment.

[168]  L. Coussens,et al.  MMP9 potentiates pulmonary metastasis formation. , 2002, Cancer cell.

[169]  G. Taraboletti,et al.  Bioavailability of VEGF in tumor-shed vesicles depends on vesicle burst induced by acidic pH. , 2006, Neoplasia.

[170]  W. T. Chen,et al.  A potential marker protease of invasiveness, seprase, is localized on invadopodia of human malignant melanoma cells. , 1994, Cancer research.

[171]  F. Miller Xenograft Models of Premalignant Breast Disease , 2000, Journal of Mammary Gland Biology and Neoplasia.

[172]  Kenneth M. Yamada,et al.  Dynamic membrane remodeling at invadopodia differentiates invadopodia from podosomes. , 2011, European journal of cell biology.

[173]  Bonnie F. Sloane,et al.  Lysosomal cathepsin B participates in the podosome-mediated extracellular matrix degradation and invasion via secreted lysosomes in v-Src fibroblasts (Cancer Research (2008) 68, (9147-9156)) , 2009 .

[174]  F. Miller,et al.  MCF10DCIS.com xenograft model of human comedo ductal carcinoma in situ. , 2000, Journal of the National Cancer Institute.

[175]  Bonnie F. Sloane,et al.  Cysteine cathepsin non-inhibitory binding partners: modulating intracellular trafficking and function , 2007, Biological chemistry.

[176]  Pan‐Chyr Yang,et al.  Up-regulated caveolin-1 accentuates the metastasis capability of lung adenocarcinoma by inducing filopodia formation. , 2002, The American journal of pathology.

[177]  C. Overall,et al.  Matrix metalloproteinases: what do they not do? New substrates and biological roles identified by murine models and proteomics. , 2010, Biochimica et biophysica acta.

[178]  Alexander Varshavsky,et al.  The ubiquitin system. , 1998, Annual review of biochemistry.

[179]  C. Myers,et al.  Breast cancer-induced angiogenesis: multiple mechanisms and the role of the microenvironment , 2003, Breast Cancer Research.

[180]  A. Ben-Baruch,et al.  Host microenvironment in breast cancer development: Inflammatory cells, cytokines and chemokines in breast cancer progression: reciprocal tumor–microenvironment interactions , 2002, Breast Cancer Research.

[181]  Bonnie F. Sloane,et al.  Visualizing Protease Activity in Living Cells: From Two Dimensions to Four Dimensions , 2008, Current protocols in cell biology.