Invited Paper: Design and modeling of a transistor vertical-cavity surface-emitting laser

A multiple quantum well (MQW) transistor vertical-cavity surface-emitting laser (T-VCSEL) is designed and numerically modeled. The important physical models and parameters are discussed and validated by modeling a conventional VCSEL and comparing the results with the experiment. The quantum capture/escape process is simulated using the quantum-trap model and shows a significant effect on the electrical output of the T-VCSEL. The parameters extracted from the numerical simulation are imported into the analytic modeling to predict the frequency response and simulate the large-signal modulation up to 40 Gbps.

[1]  Ian H. White,et al.  A simple device to allow enhanced bandwidths at 850 nm in multimode fibre links for gigabit LANs , 1999 .

[2]  Allen Taflove,et al.  Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .

[3]  Milton Feng,et al.  Microwave circuit model of the three-port transistor laser , 2010 .

[4]  N. Nishiyama,et al.  Large signal analysis of AlGaInAs/InP laser transistor , 2010, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[5]  V. Kulakovskii,et al.  Band edge offset in strained InxGa1-xAs/GaAs quantum wells measured by high-excitation photoluminescence , 1993 .

[6]  M. Gokhale,et al.  Resonant tunneling transistor lasers: A new approach to obtain multi-state switching and bistable operation , 1993 .

[7]  M. Nawaz,et al.  A design analysis of a GaInP/GaInAs/GaAs-based 980 nm Al-free pump laser using self-consistent numerical simulation , 2001 .

[8]  Milton Feng,et al.  Room temperature continuous wave operation of a heterojunction bipolar transistor laser , 2005 .

[9]  M. R. Pinto,et al.  Simulation of semiconductor quantum well lasers , 1997, Photonics West.

[10]  B Faraji,et al.  Modelling the effect of the feedback on the small signal modulation of the transistor laser , 2010, 2010 IEEE Photinic Society's 23rd Annual Meeting.

[11]  Chih-Hung Wu,et al.  Coulomb enhancement in InGaAs-GaAs quantum-well lasers , 1997 .

[12]  J. Piprek,et al.  Thermal conductivity reduction in GaAs-AlAs distributed Bragg reflectors , 1998, IEEE Photonics Technology Letters.

[13]  K. Choquette,et al.  Numerical investigation of self-heating effects of oxide-confined vertical-cavity surface-emitting lasers , 2005, IEEE Journal of Quantum Electronics.

[14]  C. Chang-Hasnain Lasers and Electro-Optics , 1995, IEEE Circuits and Devices Magazine.

[15]  John E. Bowers,et al.  Optimization of GaAs amplification photodetectors for 700% quantum efficiency , 2003 .

[16]  Kent D. Choquette,et al.  Comprehensive numerical modeling of vertical-cavity surface-emitting lasers , 1996 .

[17]  Wei Shi,et al.  Common-emitter and common-base small-signal operation of the transistor laser , 2008 .

[18]  Radhakrishnan Nagarajan,et al.  Carrier transport effects in quantum well lasers: an overview , 1994 .

[19]  Wei Shi,et al.  Numerical Study of the Optical Saturation and Voltage Control of a Transistor Vertical-Cavity Surface-Emitting Laser , 2008, IEEE Photonics Technology Letters.

[20]  Amnon Yariv,et al.  A monolithic integration of GaAs/GaAlAs bipolar transistor and heterostructure laser , 1980 .

[21]  P. Dobson Physics of Semiconductor Devices (2nd edn) , 1982 .

[22]  J. Leburton,et al.  Modeling of the Transient Characteristics of Heterojunction Bipolar Transistor Lasers , 2009, IEEE Journal of Quantum Electronics.

[23]  S. M. Sze,et al.  Physics of semiconductor devices , 1969 .

[24]  Milton Feng,et al.  Electrical-optical signal mixing and multiplication (2-->22 GHz) with a tunnel junction transistor laser , 2009 .

[25]  S. M. Sze Physics of semiconductor devices /2nd edition/ , 1981 .

[26]  A. Yariv,et al.  Vertical integration of an InGaAsP/InP heterojunction bipolar transistor and a double heterostructure laser , 1987 .

[27]  Richard K. Ahrenkiel,et al.  Auger recombination in heavily carbon-doped GaAs , 2001 .

[28]  Larry A. Coldren,et al.  Vertical-Cavity Surface-Emitting Lasers , 2001 .

[29]  Wei Shi,et al.  Design and epitaxy of 1.5 microm InGaAsP-InP MQW material for a transistor laser. , 2010, Optics express.

[30]  F. Koyama Recent Advances of VCSEL Photonics , 2006 .

[31]  Kiyoyuki Yokoyama,et al.  Explanation for the temperature insensitivity of the Auger recombination rates in 1.55 μm InP‐based strained‐layer quantum‐well lasers , 1995 .

[32]  Wei Shi,et al.  Analytical Modeling of the Transistor Laser , 2009, IEEE Journal of Selected Topics in Quantum Electronics.

[33]  Fumio Koyama,et al.  Recent advances in VCSEL photonics , 2006, 16th Opto-Electronics and Communications Conference.

[34]  Chuang,et al.  Efficient band-structure calculations of strained quantum wells. , 1991, Physical review. B, Condensed matter.

[35]  Hiroyuki Serizawa,et al.  Operation principle of the InGaAsP/InP laser transistor , 1985 .

[36]  Mark S. Hybertsen,et al.  Simulation of semiconductor quantum well lasers , 2000 .

[37]  Jerry R. Meyer,et al.  Band parameters for III–V compound semiconductors and their alloys , 2001 .

[38]  Rudiger Quay,et al.  Analysis and Simulation of Heterostructure Devices , 2004 .