Covering Graphs, Magnetic Spectral Gaps and Applications to Polymers and Nanoribbons

In this article, we analyze the spectrum of discrete magnetic Laplacians (DML) on an infinite covering graph $\widetilde{G} \rightarrow G=\widetilde{G} /\Gamma$ with (Abelian) lattice group $\Gamma$ and periodic magnetic potential $\widetilde{\beta}$. We give sufficient conditions for the existence of spectral gaps in the spectrum of the DML and study how these depend on $\widetilde{\beta}$. The magnetic potential may be interpreted as a control parameter for the spectral bands and gaps. We apply these results to describe the spectral band/gap structure of polymers (polyacetylene) and of nanoribbons in the presence of a constant magnetic field.

[1]  P. Kuchment The mathematics of photonic crystals , 2001 .

[2]  P. Kuchment,et al.  On the location of spectral edges in -periodic media , 2010, 1006.3001.

[3]  Motoko Kotani,et al.  Discrete Geometric Analysis , 2004 .

[4]  P. Kim,et al.  Energy band-gap engineering of graphene nanoribbons. , 2007, Physical review letters.

[5]  Generating spectral gaps by geometry , 2004, math-ph/0406032.

[6]  Kaoru Ono,et al.  Periodic Schrödinger Operators on a Manifold , 1989 .

[7]  Yusuke Higuchi,et al.  A REMARK ON THE SPECTRUM OF MAGNETIC LAPLACIAN ON A GRAPH , 1999 .

[8]  Peter Kuchment,et al.  Differential Operators on Graphs and Photonic Crystals , 2002, Adv. Comput. Math..

[9]  H. Santos,et al.  Carbon nanoelectronics: unzipping tubes into graphene ribbons. , 2009, Physical review letters.

[10]  EXISTENCE OF SPECTRAL GAPS, COVERING MANIFOLDS AND RESIDUALLY FINITE GROUPS , 2005, math-ph/0503005.

[11]  E. Korotyaev,et al.  Schr\"odinger operators on periodic discrete graphs , 2013, 1307.1841.

[12]  Wanlin Guo,et al.  Energy-gap modulation of BN ribbons by transverse electric fields: First-principles calculations , 2008, 1101.3118.

[13]  Peter Kuchment Quantum graphs: II. Some spectral properties of quantum and combinatorial graphs , 2005 .

[14]  S. Louie,et al.  Energy gaps in graphene nanoribbons. , 2006, Physical Review Letters.

[15]  Eigenvalue bracketing for discrete and metric graphs , 2008, 0804.1076.

[16]  Periodic manifolds with spectral gaps , 2002, math-ph/0207017.

[17]  T. Kurokawa,et al.  Electrical properties of polyacetylene/polysiloxane interface , 1983 .

[18]  Spectral band localization for Schrödinger operators on discrete periodic graphs , 2015 .

[19]  J. Chien Polyacetylene: Chemistry, Physics, and Material Science , 1984 .

[20]  The Creation of Spectral Gaps by Graph Decoration , 2000, math-ph/0008013.

[21]  Shuming Nie,et al.  Semiconductor nanocrystals: structure, properties, and band gap engineering. , 2010, Accounts of chemical research.

[22]  J. Garnett,et al.  Gaps and bands of one dimensional periodic Schrödinger operators , 1984 .

[23]  O. Post,et al.  Spectral gaps and discrete magnetic Laplacians , 2017, 1710.01157.

[24]  Aktito Suzuki Spectrum of the Laplacian on a covering graph with pendant edges I: The one-dimensional lattice and beyond , 2013 .

[25]  Toshikazu Sunada A discrete analogue of periodic magnetic Schr?odinger operators , 1994 .

[26]  M. Skriganov The spectrum band structure of the three-dimensional Schrödinger operator with periodic potential , 1985 .