Accurate Uncertainty Quantification Using Inaccurate Computational Models

This paper proposes a novel uncertainty quantification framework for computationally demanding systems characterized by a large vector of non-Gaussian uncertainties. It combines state-of-the-art techniques in advanced Monte Carlo sampling with Bayesian formulations. The key departure from existing works is the use of inexpensive, approximate computational models in a rigorous manner. Such models can readily be derived by coarsening the discretization size in the solution of the governing PDEs, increasing the time step when integration of ODEs is performed, using fewer iterations if a nonlinear solver is employed or making use of lower-order models. It is shown that even in cases where the inaccurate models provide very poor approximations of the high-fidelity response, statistics of the latter can be quantified accurately with significant reductions in the computational effort. Multiple approximate models can be used, and rigorous confidence bounds of the estimates produced are provided at all stages.

[1]  G. Wahba,et al.  A Correspondence Between Bayesian Estimation on Stochastic Processes and Smoothing by Splines , 1970 .

[2]  Carl E. Rasmussen,et al.  Bayesian Monte Carlo , 2002, NIPS.

[3]  Baskar Ganapathysubramanian,et al.  Sparse grid collocation schemes for stochastic natural convection problems , 2007, J. Comput. Phys..

[4]  A. O'Hagan,et al.  Predicting the output from a complex computer code when fast approximations are available , 2000 .

[5]  M. Ortiz,et al.  Computational modelling of impact damage in brittle materials , 1996 .

[6]  M. Y. Hussaini,et al.  A variance reduction method based on sensitivity derivatives , 2006 .

[7]  N. Cutland,et al.  On homogeneous chaos , 1991, Mathematical Proceedings of the Cambridge Philosophical Society.

[8]  J. Beck,et al.  Estimation of Small Failure Probabilities in High Dimensions by Subset Simulation , 2001 .

[9]  N. Chopin Central limit theorem for sequential Monte Carlo methods and its application to Bayesian inference , 2004, math/0508594.

[10]  James O. Berger,et al.  Ockham's Razor and Bayesian Analysis , 1992 .

[11]  David R. Bickel Comment on "Sequential Monte Carlo for Bayesian Computation" (P. Del Moral, A. Doucet, A. Jasra) , 2006 .

[12]  Amos Storkey,et al.  Advances in Neural Information Processing Systems 20 , 2007 .

[13]  S. Torquato,et al.  Reconstructing random media. II. Three-dimensional media from two-dimensional cuts , 1998 .

[14]  G. I. Barenblatt THE MATHEMATICAL THEORY OF EQUILIBRIUM CRACKS IN BRITTLE FRACTURE , 1962 .

[15]  Sonja Kuhnt,et al.  Design and analysis of computer experiments , 2010 .

[16]  Nando de Freitas,et al.  Robust Full Bayesian Learning for Radial Basis Networks , 2001, Neural Computation.

[17]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[18]  P. Moral Feynman-Kac Formulae: Genealogical and Interacting Particle Systems with Applications , 2004 .

[19]  S. Mukherjee,et al.  Nonparametric Bayesian Kernel Models , 2007 .

[20]  Hoon Kim,et al.  Monte Carlo Statistical Methods , 2000, Technometrics.

[21]  John K Kruschke,et al.  Bayesian data analysis. , 2010, Wiley interdisciplinary reviews. Cognitive science.

[22]  Phaedon-Stelios Koutsourelakis,et al.  Design of complex systems in the presence of large uncertainties: A statistical approach , 2008 .

[23]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[24]  A. Doucet,et al.  Efficient Block Sampling Strategies for Sequential Monte Carlo Methods , 2006 .

[25]  Timothy J. Robinson,et al.  Sequential Monte Carlo Methods in Practice , 2003 .

[26]  Runze Li,et al.  Design and Modeling for Computer Experiments , 2005 .

[27]  Terrence J. Sejnowski,et al.  Learning Overcomplete Representations , 2000, Neural Computation.

[28]  Phaedon-Stelios Koutsourelakis,et al.  Uncertainty quantification in complex systems using approximate solvers , 2008, 0808.3416.

[29]  M. Ortiz,et al.  FINITE-DEFORMATION IRREVERSIBLE COHESIVE ELEMENTS FOR THREE-DIMENSIONAL CRACK-PROPAGATION ANALYSIS , 1999 .

[30]  Thomas A. Zang,et al.  Stochastic approaches to uncertainty quantification in CFD simulations , 2005, Numerical Algorithms.

[31]  M. Yousuff Hussaini,et al.  Exploitation of Sensitivity Derivatives for Improving Sampling Methods , 2003 .

[32]  Jun S. Liu,et al.  Sequential importance sampling for nonparametric Bayes models: The next generation , 1999 .

[33]  Radford M. Neal Annealed importance sampling , 1998, Stat. Comput..

[34]  Zoubin Ghahramani,et al.  A note on the evidence and Bayesian Occam's razor , 2005 .

[35]  P. Moral,et al.  Sequential Monte Carlo samplers , 2002, cond-mat/0212648.

[36]  Carl E. Rasmussen,et al.  Occam's Razor , 2000, NIPS.

[37]  George Eastman House,et al.  Sparse Bayesian Learning and the Relevance Vector Machine , 2001 .

[38]  Jun S. Liu,et al.  Monte Carlo strategies in scientific computing , 2001 .

[39]  R. Cox,et al.  Journal of the Royal Statistical Society B , 1972 .

[40]  Dongbin Xiu,et al.  High-Order Collocation Methods for Differential Equations with Random Inputs , 2005, SIAM J. Sci. Comput..

[41]  Xiao-Li Meng,et al.  Simulating Normalizing Constants: From Importance Sampling to Bridge Sampling to Path Sampling , 1998 .

[42]  Xiaopeng Xu,et al.  Numerical simulations of fast crack growth in brittle solids , 1994 .

[43]  S. Torquato,et al.  Reconstructing random media , 1998 .

[44]  D. S. Dugdale Yielding of steel sheets containing slits , 1960 .