Semi-invariants of quivers and saturation for Littlewood-Richardson coefficients
暂无分享,去创建一个
[1] David A. Buchsbaum,et al. Schur Functors and Schur Complexes , 1982 .
[2] A. Horn. Eigenvalues of sums of Hermitian matrices , 1962 .
[3] A. Schofield. Semi‐Invariants of Quivers , 1991 .
[4] Michel Van den Bergh,et al. Semi-invariants of quivers for arbitrary dimension vectors , 1999 .
[5] William Fulton,et al. Eigenvalues of sums of Hermitian matrices [After A. Klyachko] , 1998 .
[6] A. King. MODULI OF REPRESENTATIONS OF FINITE DIMENSIONAL ALGEBRAS , 1994 .
[7] V. Kac. Infinite root systems, representations of graphs and invariant theory, II , 1982 .
[8] C. Ringel. Representations of K-species and bimodules , 1976 .
[9] Claudio Procesi,et al. A characteristic free approach to invariant theory , 1976 .
[10] A. Schofield. General Representations of Quivers , 1992 .
[11] V. Kac. Infinite root systems, representations of graphs and invariant theory , 1980 .
[12] R. Moody,et al. On infinite root systems , 1989 .
[13] Terence Tao,et al. The honeycomb model of GL(n) tensor products I: proof of the saturation conjecture , 1998, math/9807160.
[14] T. Tao,et al. The honeycomb model of _{}(ℂ) tensor products I: Proof of the saturation conjecture , 1999 .