Variational assimilation of remote sensing data for land surface hydrologic applications

Soil moisture plays a major role in the global hydrologic cycle. Most importantly, soil moisture controls the partitioning of available energy at the land surface into latent and sensible heat fluxes. We investigate the feasibility of estimating large-scale soil moisture profiles and related land surface variables from low-frequency (L-band) passive microwave remote sensing observations using weak-constraint variational data assimilation. We extend the iterated indirect representer method, which is based on the adjoint of the hydrologic model, to suit our application. The four-dimensional (space and time) data assimilation algorithm takes into account model and measurement uncertainties and provides optimal estimates by implicitly propagating the full error covariances. Explicit expressions for the posterior error covariances are also derived. We achieve a dynamically consistent interpolation and extrapolation of the remote sensing data in space and time, or equivalently, a continuous update of the model predictions from the data. Our hydrologic model of water and energy exchange at the land surface is expressly designed for data assimilation. It captures the key physical processes while remaining computationally efficient. The assimilation algorithm is tested with a series of experiments using synthetically generated system and measurement noise. In a realistic environment based on the Southern Great Plains 1997 (SGP97) hydrology experiment, we assess the performance of the algorithm under ideal and nonideal assimilation conditions. Specifically, we address five topics which are crucial to the design of an operational soil moisture assimilation system. (1) We show that soil moisture can be satisfactorily estimated at scales finer than the resolution of the brightness images (downscaling), provided sufficiently accurate fine-scale model inputs are available. (2) The satellite repeat cycle should be shorter than the average interstorm period. (3) The loss of optimality by using shorter assimilation intervals is offset by a substantial gain in computational efficiency. (4) Soil moisture can be satisfactorily estimated even if quantitative precipitation data are not available. (5) The assimilation algorithm is only weakly sensitive to inaccurate specification of the soil hydraulic properties. In summary, we demonstrate the feasibility of large-scale land surface data assimilation from passive microwave observations. Thesis Supervisor: Dennis B. McLaughlin Title: H.M. King Bhumibol Professor of Water Resource Management Thesis Supervisor and Committee Chair: Dara Entekhabi Title: Associate Professor of Civil and Environmental Engineering

[1]  C. Sun A stochastic approach for characterizing soil and groundwater contamination at heterogeneous field sites , 1998 .

[2]  R. Todling,et al.  Suboptimal Schemes for Atmospheric Data Assimilation Based on the Kalman Filter , 1994 .

[3]  W. Bourke Dynamic methodology. Data assimilation methods , 1984 .

[4]  Fabio Castelli,et al.  Estimation of surface heat flux and an index of soil moisture using adjoint‐state surface energy balance , 1999 .

[5]  Elfatih A. B. Eltahir,et al.  An analysis of the soil moisture‐rainfall feedback, based on direct observations from Illinois , 1997 .

[6]  Michael M. Daniel,et al.  Multiresolution statistical modeling with application to modeling groundwater flow , 1997 .

[7]  D. Pollard,et al.  A Global Climate Model (GENESIS) with a Land-Surface Transfer Scheme (LSX). Part I: Present Climate Simulation. , 1995 .

[8]  Thomas J. Schmugge,et al.  A comparison of radiative transfer models for predicting the microwave emission from soils , 1981 .

[9]  Robert E. Dickinson,et al.  The Force–Restore Model for Surface Temperatures and Its Generalizations , 1988 .

[10]  Carl Wunsch,et al.  Adaptation of a fast optimal interpolation algorithm to the mapping of oceanographic data , 1997 .

[11]  G. Evensen Sequential data assimilation with a nonlinear quasi‐geostrophic model using Monte Carlo methods to forecast error statistics , 1994 .

[12]  Eric F. Wood,et al.  Application of multiscale water and energy balance models on a tallgrass prairie , 1994 .

[13]  Adriaan A. Van de Griend,et al.  Bare soil surface resistance to evaporation by vapor diffusion under semiarid conditions , 1994 .

[14]  G. Evensen,et al.  Analysis Scheme in the Ensemble Kalman Filter , 1998 .

[15]  Lance M. Leslie,et al.  Tropical Cyclone Prediction Using a Barotropic Model Initialized by a Generalized Inverse Method , 1993 .

[16]  C. Bhumralkar Numerical Experiments on the Computation of Ground Surface Temperature in an Atmospheric General Circulation Model , 1975 .

[17]  M. Verlaan,et al.  Tidal flow forecasting using reduced rank square root filters , 1997 .

[18]  S. Planton,et al.  A Simple Parameterization of Land Surface Processes for Meteorological Models , 1989 .

[19]  Thomas J. Jackson,et al.  Soil moisture mapping at regional scales using microwave radiometry: the Southern Great Plains Hydrology Experiment , 1999, IEEE Trans. Geosci. Remote. Sens..

[20]  Jean-Christophe Calvet,et al.  Retrieving the Root-Zone Soil Moisture from Surface Soil Moisture or Temperature Estimates: A Feasibility Study Based on Field Measurements , 1998 .

[21]  J. Joiner,et al.  Assimilating TOVS Humidity into the GEOS-2 Data Assimilation System , 1999 .

[22]  L. Leslie,et al.  Generalized inversion of a global numerical weather prediction model, II: Analysis and implementation , 1997 .

[23]  F. L. Dimet,et al.  Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects , 1986 .

[24]  Gilles Boulet,et al.  Stomatal control of transpiration: Examination of Monteith's Formulation of canopy resistance , 1998 .

[25]  D. McLaughlin,et al.  A Reassessment of the Groundwater Inverse Problem , 1996 .

[26]  L. Leslie,et al.  Generalized inversion of a global numerical weather prediction model , 1996 .

[27]  Andrew F. Bennett,et al.  A Parallel Algorithm for Variational Assimilation in Oceanography and Meteorology , 1992 .

[28]  S. Rahmstorf,et al.  Ocean Circulation , 1901, Nature.

[29]  T. Jackson,et al.  Ground‐based investigation of soil moisture variability within remote sensing footprints During the Southern Great Plains 1997 (SGP97) Hydrology Experiment , 1999 .

[30]  Y. Kerr,et al.  Soil moisture and temperature profile effects on microwave emission at low frequencies , 1995 .

[31]  W. J. Shuttleworth,et al.  Integration of soil moisture remote sensing and hydrologic modeling using data assimilation , 1998 .

[32]  J. Kondo,et al.  A Parameterization of Evaporation from Bare Soil Surfaces. , 1990 .

[33]  A. Bennett,et al.  TOPEX/POSEIDON tides estimated using a global inverse model , 1994 .

[34]  T. Jackson,et al.  The impact on area‐averaged heat fluxes from using remotely sensed data at different resolutions: A case study with Washita '92 data , 1999 .

[35]  Dr. M. G. Worster Methods of Mathematical Physics , 1947, Nature.

[36]  D. E. Harrison,et al.  Generalized Inversion of Tropical Atmosphere–Ocean Data and a Coupled Model of the Tropical Pacific , 1998 .

[37]  Carl Wunsch,et al.  Mapping Mediterranean Altimeter Data with a Multiresolution Optimal Interpolation Algorithm , 1998 .

[38]  D. Dee Simplification of the Kalman filter for meteorological data assimilation , 1991 .

[39]  A. Bennett Inverse Methods in Physical Oceanography , 1992 .

[40]  Cass T. Miller,et al.  Robust solution of Richards' equation for nonuniform porous media , 1998 .

[41]  Clemens Simmer,et al.  Up‐scaling effects in passive microwave remote sensing: ESTAR 1.4 GHz measurements during SGP '97 , 1999 .

[42]  Peter S. Eagleson,et al.  Climate, soil, and vegetation: 3. A simplified model of soil moisture movement in the liquid phase , 1978 .

[43]  J. D. Lin On the force-restore method for prediction of ground surface temperature , 1980 .

[44]  Jean-François Mahfouf,et al.  Analysis of Soil Moisture from Near-Surface Parameters: A Feasibility Study , 1991 .

[45]  C.,et al.  Analysis methods for numerical weather prediction , 2022 .

[46]  C. G. Gardner,et al.  High dielectric constant microwave probes for sensing soil moisture , 1974 .

[47]  R. Todling,et al.  Approximate Data Assimilation Schemes for Stable and Unstable Dynamics , 1996 .

[48]  E. Engman,et al.  Estimating Soil Moisture From Satellite Microwave Observations: Past and Ongoing Projects, and Relevance to GCIP. , 1999 .

[49]  Dennis McLaughlin,et al.  Recent developments in hydrologic data assimilation , 1995 .

[50]  F. Bouttier,et al.  Sequential Assimilation of Soil Moisture from Atmospheric Low-Level Parameters. Part II: Implementation in a Mesoscale Model , 1993 .

[51]  T. Schmugge,et al.  Vegetation effects on the microwave emission of soils , 1991 .

[52]  R. Dickinson,et al.  Treatment of soil, vegetation and snow in land surface models: a test of the Biosphere-Atmosphere Transfer Scheme with the HAPEX-MOBILHY, ABRACOS and Russian data , 1998 .

[53]  Lynn B. Reid A functional inverse approach for three-dimensional characterization of subsurface contamination , 1996 .

[54]  A.H. Haddad,et al.  Applied optimal estimation , 1976, Proceedings of the IEEE.

[55]  J. Mahfouf,et al.  Comparative Study of Various Formulations of Evaporations from Bare Soil Using In Situ Data , 1991 .

[56]  D. Mihailovic,et al.  A Coupled Soil Moisture and Surface Temperature Prediction Model , 1991 .

[57]  J. Pailleux,et al.  Variational surface analysis from screen level atmospheric parameters , 1999 .

[58]  J. Deardorff Efficient prediction of ground surface temperature and moisture, with inclusion of a layer of vegetation , 1978 .

[59]  P. Courtier,et al.  Variational assimilation of conventional meteorological observations with a multilevel primitive-equation model , 1993 .

[60]  C. Wunsch The Ocean Circulation Inverse Problem , 1996 .

[61]  Thomas J. Jackson,et al.  A dielectric model of the vegetation effects on the microwave emission from soils , 1992, IEEE Trans. Geosci. Remote. Sens..

[62]  Michael D. Eilts,et al.  The Oklahoma Mesonet: A Technical Overview , 1995 .

[63]  S. Cohn,et al.  Assessing the Effects of Data Selection with the DAO Physical-Space Statistical Analysis System* , 1998 .

[64]  Ole Wendroth,et al.  Estimation of in situ hydraulic conductivity function from nonlinear filtering theory , 1993 .

[65]  Robert Horton,et al.  Soil Heat and Water Flow With a Partial Surface Mulch , 1987 .

[66]  R. Errico What is an adjoint model , 1997 .

[67]  P. Malanotte‐Rizzoli Modern approaches to data assimilation in ocean modeling , 1996 .

[68]  Randal D. Koster,et al.  A comparative analysis of two land surface heterogeneity representations , 1992 .

[69]  A. Willsky,et al.  A multiscale approach for estimating solute travel time distributions , 2000 .

[70]  P. Milly Integrated remote sensing modeling of soil moisture: sampling frequency, response time, and accuracy of estimates , 1986 .

[71]  Piers J. Sellers,et al.  A Simplified Biosphere Model for Global Climate Studies , 1991 .

[72]  D. A. Zimmerman,et al.  A comparison of seven geostatistically based inverse approaches to estimate transmissivities for modeling advective transport by groundwater flow , 1998 .

[73]  José M. F. Moura,et al.  Data assimilation in large time-varying multidimensional fields , 1999, IEEE Trans. Image Process..

[74]  Lawrence L. Kupper,et al.  Probability, statistics, and decision for civil engineers , 1970 .

[75]  Elfatih A. B. Eltahir,et al.  A Soil Moisture–Rainfall Feedback Mechanism: 1. Theory and observations , 1998 .

[76]  M. Celia,et al.  A General Mass-Conservative Numerical Solution for the Unsaturated Flow Equation , 1990 .

[77]  G. Evensen Inverse methods and data assimilation in nonlinear ocean models , 1994 .

[78]  Shafiqul Islam,et al.  Prediction of Ground Surface Temperature and Soil Moisture Content by the Force‐Restore Method , 1995 .

[79]  C. Rosenzweig,et al.  Improved Ground Hydrology Calculations for Global Climate Models (GCMs): Soil Water Movement and Evapotranspiration , 1988 .

[80]  S. Diamond,et al.  Effect of Surface , 1982 .

[81]  A. Dalcher,et al.  A Simple Biosphere Model (SIB) for Use within General Circulation Models , 1986 .

[82]  William H. Press,et al.  Numerical recipes in C , 2002 .

[83]  F. Bouttier,et al.  Sequential Assimilation of Soil Moisture from Atmospheric Low-Level Parameters. Part I: Sensitivity and Calibration Studies , 1993 .

[84]  Gabriel G. Katul,et al.  Evaporation and the field scale soil water diffusivity function , 1993 .

[85]  Dara Entekhabi,et al.  Tests of sequential data assimilation for retrieving profile soil moisture and temperature from observed L-band radiobrightness , 1999, IEEE Trans. Geosci. Remote. Sens..

[86]  Pierre FJ Lermusiaux Data Assimilation via Error Subspace Statistical Estimation. , 1999 .

[87]  Thomas Wilheit,et al.  Radiative Transfer in a Plane Stratified Dielectric , 1975, IEEE Transactions on Geoscience Electronics.

[88]  P. Sellers,et al.  Testing the Simple Biosphere model (SiB) using point micrometeorological and biophysical data , 1987 .

[89]  P. Courtier,et al.  Four-dimensional variational data assimilation using the adjoint of a multilevel primitive-equation model , 1991 .

[90]  J. Kong,et al.  Theory for passive microwave remote sensing of near‐surface soil moisture , 1977 .

[91]  D. G. Watts,et al.  Spectral analysis and its applications , 1968 .

[92]  Piers J. Sellers,et al.  A Global Climatology of Albedo, Roughness Length and Stomatal Resistance for Atmospheric General Circulation Models as Represented by the Simple Biosphere Model (SiB) , 1989 .

[93]  Elfatih A. B. Eltahir,et al.  A Soil Moisture–Rainfall Feedback Mechanism: 2. Numerical experiments , 1998 .

[94]  J. Famiglietti,et al.  Multiscale modeling of spatially variable water and energy balance processes , 1994 .

[95]  Michael Ghil,et al.  Meteorological data assimilation for oceanographers. Part I: Description and theoretical framework☆ , 1989 .

[96]  Thomas Kaminski,et al.  Recipes for adjoint code construction , 1998, TOMS.

[97]  D. Randall,et al.  A Revised Land Surface Parameterization (SiB2) for Atmospheric GCMS. Part I: Model Formulation , 1996 .

[98]  P. Courtier,et al.  A strategy for operational implementation of 4D‐Var, using an incremental approach , 1994 .

[99]  Paul W. Fieguth,et al.  Multiresolution optimal interpolation and statistical analysis of TOPEX/POSEIDON satellite altimetry , 1995, IEEE Transactions on Geoscience and Remote Sensing.

[100]  H. J. Thiébaux Anisotropic Correlation Functions for Objective Analysis , 1976 .

[101]  Thomas R. Gatliffe,et al.  Calibration and Reliability in Groundwater Modelling: Coping with Uncertainty , 2002, Technometrics.

[102]  R. Koster,et al.  Modeling the land surface boundary in climate models as a composite of independent vegetation stands , 1992 .

[103]  M. Univer Ground-based investigation of soil moisture variability within remote sensing footprints during the Southern Great Plains 1997 (SGP97) Hydrology Experiment , 1999 .

[104]  W. J. Shuttleworth,et al.  Soil‐moisture nudging experiments with a single‐column version of the ECMWF model , 1999 .

[105]  M. Ghil,et al.  Data assimilation in meteorology and oceanography , 1991 .

[106]  Thomas J. Jackson,et al.  Passive microwave observation of diurnal surface soil moisture , 1997, IEEE Trans. Geosci. Remote. Sens..

[107]  C. Justice,et al.  A Revised Land Surface Parameterization (SiB2) for Atmospheric GCMS. Part II: The Generation of Global Fields of Terrestrial Biophysical Parameters from Satellite Data , 1996 .

[108]  P. Courtier,et al.  Important literature on the use of adjoint, variational methods and the Kalman filter in meteorology , 1993 .

[109]  G. Evensen,et al.  Assimilation of Geosat altimeter data for the Agulhas current using the ensemble Kalman filter with , 1996 .

[110]  Andreas Rhodin,et al.  A case study on variational soil moisture analysis from atmospheric observations , 1998 .

[111]  Remote-Sensing Soil Moisture Using Four-Dimensional Data Assimilation. , 1996 .

[112]  F. Ulaby,et al.  Microwave Dielectric Behavior of Wet Soil-Part II: Dielectric Mixing Models , 1985, IEEE Transactions on Geoscience and Remote Sensing.

[113]  R. Daley Atmospheric Data Analysis , 1991 .

[114]  Philippe Courtier,et al.  A comparison between four-dimensional variational assimilation and simplified sequential assimilation relying on three-dimensional variational analysis , 1993 .

[115]  G. Evensen,et al.  Parameter estimation solving a weak constraint variational formulation for an Ekman model , 1997 .

[116]  Anthony W. England,et al.  Radiobrightness of prairie soil and grassland during dry‐down simulations , 1998 .

[117]  B. Choudhury,et al.  Effect of surface roughness on the microwave emission from soils , 1979 .

[118]  F. Kucharski,et al.  Variational analysis of effective soil moisture from screen‐level atmospheric parameters: Application to a short‐range weather forecast model , 1999 .

[119]  Tsan Mo,et al.  A parameterization of effective soil temperature for microwave emission , 1982 .

[120]  Dara Entekhabi,et al.  Solving the inverse problem for soil moisture and temperature profiles by sequential assimilation of multifrequency remotely sensed observations , 1994, IEEE Trans. Geosci. Remote. Sens..

[121]  G. Hornberger,et al.  Empirical equations for some soil hydraulic properties , 1978 .

[122]  P. Wetzel,et al.  Evapotranspiration from Nonuniform Surfaces: A First Approach for Short-Term Numerical Weather Prediction , 1988 .

[123]  A. Robinson,et al.  Data Assimilation via Error Subspace Statistical Estimation.Part I: Theory and Schemes , 1999, Monthly Weather Review.

[124]  F. S. Nakayama,et al.  The Dependence of Bare Soil Albedo on Soil Water Content. , 1975 .

[125]  Thomas J. Schmugge,et al.  A soil and atmospheric boundary layer model for evapotranspiration and soil moisture studies , 1983 .